
PascalABC.NET system  

PascalABC.NET is the next-generation Pascal programming 
system and language for Microsoft's .NET platform. 
PascalABC.NET has all the main elements of modern programming 
languages: modules, classes, overloading, interfaces, exceptions, 
generalized classes, garbage collection, lambda expressions, and 
some tools for concurrency, including OpenMPdirectives. 
PascalABC.NET also includes a simple integrated environment 
focused on effective learning of modern programming. 

• PascalABC.NETlanguage description. 
• The benefitsof PascalABC.NET for program development and 

training. 
• DifferencesbetweenPascalABC.NETandDelphi(Object Pascal). 
• Examples to illustrate the main features of PascalABC.NET can 

be found in the Help/Summary menu. 

The Pascal language was developed by the Swiss scientist Niklaus 
Wirth in 1970 as a language with strict typing and intuitive syntax. In 
the 80's, the most famous implementation was the Turbo Pascal 
compiler from Borland, in the 90'sit was replaced by the Delphi -
programming environment, which became one of the best 
environments for the rapid creation of applications for Windows. 
Delphi has introduced a number of successful object-oriented 
extensions to the language of Pascal, the updated language was 
named Object Pascal. Since Delphi 7, the language Delphi Object 
Pascal became known simply as Delphi. Of alternative 
implementations of Object Pascal should be noted multi-platform 
open source compiler Free Pascal. 

PascalABC.NET was created for two main reasons: the 
obsolescence of the standard Pascal language and systems based 
on it (Free Pascal); and the need for a modern, simple, free and 
powerful integrated programming environment. 

PascalABC.NET relies on the advanced Microsoft.NET 
programming platform, which provides PascalABC.NET with a huge 
number of standard libraries and makes it easy to combine with other 
.NET languages: C#, Visual Basic.NET, Managed C++, Oxygene 
and others. The .NET platform also provides such linguistic tools as 



a single mechanism for handling exceptions, a single mechanism for 
managing memory in the form of garbage collection, as well as the 
ability to freely use classes, inheritance, polymorphism and 
interfaces between modules written in different .NET-languages. You 
can read about what the Microsoft.NET platform is, its benefits for 
programming and for learning here. 

The PascalABC.NET language is close to a Delphi (Object Pascal) 
implementation. It lacks some specific Delphi language 
constructsandchanges some constructs. It also has a number of new 
features: autodefinition of type when defining, variables can be 
defined inside a block, +=, -=, *=, /= operations are available, 

methods can be defined inside the class or record body, methods 
and properties built into standard types can be used, object memory 
is managed byGarbageCollector and doesn't require explicit freeing, 
set sets can be created based on arbitrary types, foreach 

statements are included, for and foreach loop variables can be 

defined directly in the loop header, generalized clauses are included, 
and there are many new features. 

Close in ideology to PascalABC.NET is the language RemObjects 
Oxygene (21st century Object Pascal). However, it is strongly 
modified towards .NET: there are no global descriptions, all 
descriptions are placed in a class that contains a static method Main, 
there are no standard Pascal subroutines. In addition, RemObjects 
Oxygene is a paid system and does not contain its own shell 
(embedded in Visual Studio and other IDEs), which makes it almost 
impossible to use in education. 

The integrated PascalABC.NET environment provides syntax 
highlighting, code hinting (point hinting, subroutine parameter hinting, 
code pop-up hinting), formatting of program text on demand, 
transition to name definition and implementation, refactoring 
elements. 

All rights to the PascalABC.NET programming system belong to the 
PascalABCCompiler Team (web site http://pascalabc.net).



A brief summary of the main points  

This text provides a brief overview of the features of 
PascalABC.NET. 

• PascalABC.NET is a lightweight and powerful programming 
environment with a detailed help system, code prompting, auto-
formatting, built-in debugger and built-in form designer. The 
integrated PascalABC.NET development environment is geared 
towards creating projects of low to medium complexity, and to 
teach you about modern programming. 

• PascalABC.NET is a powerful and modern programming 
language. It surpasses Delphi and contains almost all the 
features of C#. 

• PascalABC.NET relies on the Microsoft .NET platform - its 
language capabilities and libraries - to make it flexible, efficient, 
and constantly evolving. You can also easily combine libraries 
developed in PascalABC.NET and other .NET languages. 

• The PascalABC.NET compiler generates code that runs as fast 
as C# code and slightly slower than C++ and Delphi. 

• PascalABC.NET is representative of the line of modern Pascal 
languages along with Delphi XE and Oxygene. 

• The opinion that Pascal language is outdated and losing its 
positions is based on the idea of old Pascal and old 
programming environments (for example, Free Pascal with its 
outdated console shell and Delphi language of 2002 sample). 
Unfortunately, the mass of domestic educational literature with 
persistence worthy of a better use, is focused on outdated Turbo 
Pascal with the ancient console shell, poor graphics library and 
obsolete means of object-orientedprogramming, developing in 
students a persistent aversion to the Pascal language in 
general. 

• PascalABC.NET is enhanced with modern language features for 
easy, compact and understandable programming. 

• PascalABC.NET is a fairly mature environment. Its prototype, 
the Pascal ABC learning system, was introduced in 2002. 
PascalABC.NET is a growing environment. We're working on 
new language features and new libraries. 

The following is a series of programs with short commentary that 



explain the features and capabilities of PascalABC.NET. 

The program texts are located in the working folder (by default 
C:\PABCWork.NET) in the subfolder Samples\!MainFeatures. 

To start the programs, the window must be opened through the menu 
item "Help / Short Talk" so that it does not completely cover the 
window of the PascalABC.NET shell. 

Main 
1. AssignExtpas. This example illustrates the use of extended 

assignment operators += - = *= /= for integers and real. The /= 
operator for integers is, of course, forbidden. 

2. BlockVar. pas. Variables can be described inside the begin-end 
block and initialized when described. This is very convenient for 
intermediate variables, and in PascalABC.NET due to specific 
implementation speeds up access to variables by 30%. 

3. AutoVars.pas. If a variable is initialized during description, you 
may not specify its type: it is determined by the type of the right 
part (autodefinition of type). A variable - parameter of a for loop 
can be described directly in the title of the loop, combining this 
with auto-definition of type. 

4. Simp.leNewFeatures.pas. An example that combines the 
features from the previous three examples. 

5. WriteAll.pas. The write procedure outputs any type. In 
particular, it outputs all elements of a set. If it does not know the 
type, it prints the type name. 

6. WriteFormatpas. The standard WriteFormat procedure allows 
for formatted output. The format string view is borrowed from 
.NET. 

7. StandardTypes.pas. This program lists all standard integer and 
real types. The program outputs their sizes. 

8. RandomDiap.pas. Random(a,b), which returns a random integer 
in the range [a,b], was added to the random number generation 
functions. It is not necessary to call Randomize procedure at the 
beginning of the program. 

9. Rea.lExtNums.pas. Actions with real values cannot cause 
overflow in .NET. In case of incorrect operations (division by 0, 
overflow or taking the logarithm of a negative number) we will get 
either "infinity" value or "NaN" value (not a number). 

file:///C:/PABCWork.NET


10. Foreach.pas. The foreach statement is designed to loop 
through containers, such as arrays, sets, and standard library 
containers (e.g., List<T>). The container elements are read-
only. 

11. Amp.pas. Keywords can be used as names, in which case they 
should be preceded by a sign & remove keyword attribute. In 
addition, keywords can be used as fields. For example, &Type 
or System.Type. 

Types 
12. CharFunctpas. Char characters store Unicode and therefore 

occupy 2 bytes. The Ord and Chr functions work exactly with 
Unicode. For compatibility, the OrdAnsi and ChrAnsi functions 
work in single-byte Windows encoding. 

13. StringTypes.pas. String strings occupy variable length memory 
and are projected onto .NET-type System.String. However, 
unlike NET strings, they are modifiable and indexed with 1. To 
work with fixed-length strings, you should use the type string[n] 
or shortstring=string[255]. In particular, typed files are only 
allowed for short strings. 

14. StringMethods.pas. String strings have a number of methods as 
.NET classes. These methods assume that strings are indexed 
from scratch. 

15. Stringinteger.pas. All types are classes. Simple types, too. 
Therefore, it is easier to convert string to integer and real by 
using static Parse methods of corresponding class (for example, 
integer.Parse(s)). It is more convenient to convert integer or real 
to string using instance method ToString (for example, 
r.ToString). 

16. Enum.pas. An enumerated type allows you to refer to its 
constants not only directly, but also using an entry like 
TypeName.ConstantName. It is worth noting that all enumerated 
types are derived from System.Enum. 

17. Sets.pas. Sets can be of any basic type. Internally, a set is 
stored as a hash table, but when the set is output in the write 
procedure, its elements are ordered. 

18. DynArray.pas. Dynamic arrays of array of T are references. The 
memory for them must be allocated either by calling the 
standard procedure SetLength, or by using an initializer like new 



T[n]. The SetLength procedure keeps the old contents of the 
array. Dynamic arrays are a class, derived from System.Array 
class, which has a rather rich interface. First of all we should 
mention the static methods &Array.Sort and &Array.Resize. 

19. InitRecords.pas. Field initializers are allowed in records. Record 
fields are initialized when a record variable is created. 

20. UntypedFile.pas. The file typeless files are changed compared 
to Delphi. There are no BlockRead and BlockWrite procedures, 
but you can directly write data of different types to the untyped 
file. As long as it is read in the same order. 

21. PointerToRef.pas. There are some limitations for pointers to 
managed memory. For example, a pointer cannot directly or 
indirectly point to an object of a class whose memory is 
allocated by a constructor call. 

22. Pointers.pas and References.pas. Pointers lose their position. 
We recommend actively using references instead. 

23. StructTypeEquiv.pas. Unlike Delphi, some types have 
structural equivalence, not name equivalence. For example, 
structural equivalence is used for dynamic arrays, pointers, sets, 
and procedural types. 

Subprograms 
24. FuncParams.pas. Subroutines with variable number of 

parameters are made easy by adding the keyword params 
before the parameter - dynamic array. Such parameter must be 
the last in the list. 

25. Overload.pas. Subroutine names are overloaded without the 
overload keyword. 

26. ProcVars.pas. Procedural variables can "accumulate" actions 
with the += operator. These actions can be disabled using the -= 
operator. Procedural variables can be initialized not only by 
regular subroutines, but also by static and instance methods of 
class. 

27. SwapT. pas. Generalized subroutines have a simple syntax and 
are used immediately along with the usual ones: procedure 
Swap<T>(var x,y: T); 

Modules 
28. SystemUnitTestpas. The system module is named 



PABCSystem, not System as in Delphi, and is included implicitly 
first in the list of uses. The reason for this naming is that the 
most important namespace in .NET is System. The System 
module combines many subprograms of the System, Math, and 
Utils modules of Delphi. This program illustrates the overlap 
between the PABCSystem module and the System namespace. 

29. MainProgram.pas and MyUnitpas. The module may have a 
simplified syntax (without dividing it into an interface section and 
an implementation section), which is convenient for initial 
training. In this case, all the names described fall into the 
interface section of the module. 

30. SystemUnitTestpas. To use the .NET namespaces, the same 
syntax as for plugins is used: the .NET namespaces are 
specified in the uses list. The order of namespaces is the same 
as in Delphi - from right to left in the list of uses, the 
PABCSystem module is viewed last. 

31. Main.pas and MyDll.pas. In PascalABC.NET it's easy to create 
and use a dll. A dll library is essentially a module that uses the 
word library instead of the unit keyword. To connect a dll to 
another program you use the compiler reference directive. 

32. CallCS.pas. PascalABC.NET is a complete .NET language that 
can be easily combined with other .NET languages. This 
example shows how to call a function in a PascalABC.NET 
program from a dll made in C#. 

33. CallNative.pas. PascalABC.NET makes it easy to call functions 
from ordinary dlls. 

Standard graphics libraries 
34. GraphABCTestpas. The GraphABC graphics library is 

designed for easy teaching of graphics programming. It hides 
most of the complexities of graphics programming: it redraws 
the graphics window itself at the right moment and takes care of 
synchronization of drawing in several handlers. In addition, 
graphics primitives are procedural, which means that you do not 
need to create numerous classes, as in NET. And you can also 
write graphical commands right after the main program starts, 
that is, you can use graphics in non-event applications. 

35. MouseEvents.pas. For graphical applications you can use 
simple mouse and keyboard events implemented as global 



procedural variables. 

36. ABC.pas. We use the library of vector graphic objects 
ABCObjects to teach students the basics of object-oriented 
programming early on. However, it can be used to write simple 
graphical learning and game applications. 

Classes 
37. AllFromObectpas. All classes are descendants of Object, all 

types are classes. You can find out the type of each variable by 
calling the GetType method. The typeof operation for a type 
returns System.Type. 

38. WriteRecord.pas. By overriding the ToString method in the 
class or record, we get to output their values in the writeln 
procedure 

39. ClassConstructor. pas. The class keyword is used for static 
methods and fields. Static constructors are used for non-trivial 
initialization of static fields. 

40. PersonInternal.pas. The new constructor syntax uses the 
keyword new and is preferred. For this reason, all constructors 
defined in the old style must be named Create. Methods can be 
described directly inside classes and records (as in C++, C#, 
and Java) 

41. Records.pas. Methods and constructors in records can be 
used the same way as in classes. Records cannot be inherited 
and records cannot be inherited. 

42. Boxing.pas. When you assign a dimensional type to an object 
of type Object, packing takes place. To unpack, use an explicit 
type conversion. 

43. GarbageCollection.pas. There are no destructors. Automatic 
garbage collection to return memory allocated to an object 
variable requires that no one else refers to that memory, 
directly or indirectly. Therefore, it is usually sufficient to assign 
nil to the object variable to free the memory. 

44. OperatorOverloading.pas. Like C++ and C#, in 
PascalABC.NET you can overload operation signs for records 
and classes. 

45. Interf.pas. The interfaces are semantically the same as those in 
C# and Java. Delphi's sophisticated implementation of COM-



based interfaces is rejected. 
46. Stack.pas. Generalized classes (generics) allow you to create 

classes parameterized by one or more types. 
47. Where.pas. You can set restrictions on parameter types of 

generalized classes. Restrictions come in three varieties: having 
a default constructor for a parameter type, inheriting it from a 
particular class, or implementing an interface. 

Standard .NET library 
48. DateTime.pas. This example illustrates the use of the DateTime 

class from the standard .NET library. 
49. LinkedListpas. This example illustrates the use of container 

classes from the standard .NET library. 
50. WinFormWithButton.pas. This example illustrates the creation 

of a windowed application.



What is .NET  
Microsoft .NET platform is a set of programs installed on top of the 
operating system and provides the execution of programs written 
specifically for .NET. .NET programs are compact, using a single set 
of data types and libraries. Microsoft is actively developing the .NET 
platform, releasing new versions with enhanced capabilities. As of 
early 2019, the latest version is .NET 4.7.1. 

The compilation of a .NET program does not generate machine code, 
but rather so-called bytecode, which contains virtual machine 
commands (in .NET it is called IL-code from the Intermediate 
Language). Bytecode commands are independent of the processor 
and the operating system used. On start-up the program containing 
the IL-code is fed to the input of the virtual machine which executes 
the program. The part of the virtual machine called JIT-compiler 
(Just In Time) immediately translates the intermediate code into 
machine code (while optimizing it) after launching the .NET-program, 
and then launches the program for execution. To be precise, the 
intermediate code is translated into machine code in parts as the 
program runs. 

This method of double compilation is more complex than the usual 
method, but has several advantages. First, the JIT compiler can 
detect the type of processor installed on a given computer, so it 
generates the most efficient machine code. Tests show that this 
makes some programs run even faster than usual. Second, IL code 
is much higher level than machine code and contains a number of 
object-oriented commands. These include the newobj command to 
call the object constructor, the callvirt command to call the virtual 
method of the object, and the throw exception generation command. 

A program or library for .NET is called an assembly and has the 
traditional extension, exe or dll. Because assemblies contain IL code, 
they are much more compact than conventional programs and 
libraries. For example, an application with a main window, menus, 
and controls takes up only a few dozen kilobytes on disk. 

The most "pure" .NET-language is C#: it was created specifically for 
the .NET platform and includes almost all of its features. .NET-
languages easily communicate with each other, not only because of 



the high-level intermediate code, but also because of the Common 
Type System (CTS - Common Type System). All standard types 
(string, character, numeric and logical) have the same representation 
in memory in all .NET-languages. This allows you, for example, to 
create a dll library in C#, put a class description in it, and then use 
that library from a PascalABC.NET program to construct an object of 
that class. You can also develop the library in PascalABC.NET, and 
then link it with your Visual Basic.NET project. Note that traditional dll 
libraries don't allow you to store externally accessible classes and 
have a number of other limitations. 

The most important tools provided by the .NET platform are a unified 
way of handling errors - exception generation and interception - and 
automatic dynamic memory freeing management, called garbage 
collection. The latter, in particular, means that there is no need for 
class destructors. 

There are programs that can restore the text of a program by IL-code 
(for example, the program ILSpy). 

In addition to the JIT compiler, an important part of the .NET platform 
is a set of standard libraries (FCL - Foundation Class Library). These 
include libraries for graphics, networking, databases, XML, 
containers, and threads, containing thousands of classes. Every 
.NET language can use all the features of these libraries. 

There is an open cross-platform implementation of Microsoft.NET 
environment -  средenvironmentMono, allowing in particular to 
develop and run .NET-programs under Linux. 

Let us briefly note the advantages and disadvantages of the .NET 
platform.

http://www.mono-project.com/


The advantages of the .NET platform  
1. The .NET platform supports a number of .NET languages. 

These include C#, Visual Basic.NET, F#, managed C++, Delphi 
Prism, Oberon, Zonnon, Iron Python, Iron Ruby, 
PascalABC.NET. 

2. Any .NET language contains the most modern language 
features: classes, properties, polymorphism, exceptions, 
overloading operations, easy creation of libraries. 

3. .NET languages are easily combined with each other, similar to 
each other in syntactic constructions and type system. 

4. There is an extensive library of standard FCL classes. 
5. .NET applications are compact. 
6. The .NET platform is actively being developed by Microsoft, 

adding both new language features and new libraries. 
7. It is much easier to create a .NET compiler than a compiler for 

a conventional language.



Disadvantages of the .NET platform  
1. Running a .NET application is several times slower than running 

an ordinary application, because it requires loading virtual 
machine components and external libraries into RAM. 

2. .NET-code in some situations is slower than usual (however, in 
most tasks, this lag is insignificant, and in some - the .NET 
applications can be ahead of conventional programs). 

3. The garbage collector starts when the dynamic memory runs 
out and takes a few milliseconds to complete. For real-time 
applications this is unacceptable. 

4. Running a .NET application requires that the .NET platform be 
installed on the computer. Without it, the application will not 
work (Note that Windows Vista and Windows 7 have the .NET 
platform built in). 

Note that the advantages of the .NET platform many times overlap 
its disadvantages.



Benefits of PascalABC.NET  

Modern Object Pascal programming language  

The PascalABC.NET language includes almost all of the standard 
Pascal language, as well as most of the language extensions to 
Delphi. However, these tools are not enough for modern 
programming. That's why PascalABC.NET has been extended with 
a number of constructs, and its standard module with a number of 
subroutines, types and classes, to make it easy to create 
applications of medium complexity. 

In addition, PascalABC.NET makes use of most of the facilities 
provided by the .NET platform: single type system, classes, 
interfaces, exceptions, delegates, overloading operations, generics, 
extension methods, lambda expressions. 

The standard PABCSystem module, which automatically plugs into 
any program, contains a huge number of standard types and 
subroutines that allow you to write clear and compact programs. 

PascalABC.NET has all the facilities of the .NET class libraries, 
constantly expanding with the latest features. This makes it easy to 
write PascalABC.NET applications for the web, the Web, XML 
documents, regular expressions, and more. 

PascalABC.NET allows you to program in a classical procedural 
style, an object-orientedstyle, and many elements of functional style 
programming. The choice of style or a combination of these styles is 
a matter of programmer taste, and when used in teaching - a 
methodical approach of the teacher. 

The combination of rich and modern language tools, the ability to 
choose different learning curves allows you to recommend 
PascalABC.NET on the one hand as a language for learning 
programming (from school children to junior and high school 
students), on the other hand - as a language for creating projects 
and libraries of medium complexity.



Simple and powerful development environment  

The integrated PascalABC.NET development environment is 
designed to create projects of low to medium complexity. It's fairly 
lightweight, yet provides the developer with all the tools they need, 
such as a built-in debugger, Intellisense tools (point hint, parameter 
hint, name hint), navigation to subprogram definition and 
implementation, code templates, and autoformatted code. 

PascalABC.NET also has a built-in form designer that lets you 
create complete RAD (Rapid Application Development) style 
windows applications. 

Unlike many professional environments, the PascalABC.NET 
development environment doesn't have a cumbersome interface and 
doesn't create a lot of auxiliary files on disk when you compile your 
program. For small programs this allows you to follow the "one 
program - one file on disk" principle. 

In the PascalABC.NET environment, great care has been taken to 
connect the running program to the shell: A console program 
launched from the shell carries out I/O in a special window built into 
the shell. You can also run several programs at the same time - all of 
which will be controlled by the shell. 

The integrated PascalABC.NET environment allows you to switch 
between Russian and English in the settings, and not only the 
interface elements, but also the error messages are localized. 

In addition, internal views of PascalABC.NET allow you to create 
compilers for other programming languages and integrate them into 
the development environment with  plugins. 

Specialized modules for training  

The Microsoft.NET platform provides PascalABC.NET with a 
standard library of huge numbers of classes to do just about 
anything - from algorithmic to application-specific. This is why 
PascalABC.NET does not need to develop a large number of its 
own modules. 

The proprietary modules that PascalABC.NET has focused 
specifically on introductory programming instruction. 

To teach programming to schoolchildren implemented modules of 

http://pascalabc.net/wiki/index.php/%d0%9f%d0%bb%d0%b0%d0%b3%d0%b8%d0%bd%d1%8b_%d0%b4%d0%bb%d1%8f_PascalABC.NET


the classic school executors Robot and Draughtsman, containing 
about two hundred automatically verifiable tasks on the basic 
structures of the programming language. 

Besides, PascalABC.NET contains a module of electronic  
ProgProgramming g Taskbook  (by M. Abramyan), which allows you 
to automatically set and check tasks. There are also the modules for 
teacher, which allow to create tasks for executors Robot, 
Draughtsman and Electronic Taskbook. 

The raster graphics module GraphWPF and the vector graphics 
module WPFObjects and the 3D graphics module Graph3D can be 
used to create simple graphics as well as interactive animation 
applications controlled by events. 

We should also mention the "student" modules: the Collections 
module for simplified collections, the Arrays module for simple 
operations with dynamic arrays, and the Forms module for manually 
creating simple applications with a windowed user interface. 

Differences between PascalABC.NET and Delphi  
Added 

1. The += -= operations for .NET events and for procedural 

variables. 
2. The operations += -= *= for integers and += -= *= /= for real 

ones. 
3. The += operation for strings. 

4. Subprograms with a variable number of parameters. 
5. The new operation to call the constructor (ident := new 

type_name(params); ). 

6. The new operation to create a dynamic array. 

7. Operation typeof . 
8. Using uses to connect .NET namespaces (implemented in 

Delphi Prism). 
9. Type of access internal (along with public, private, 

protected). 
10. Variable initialization: var a: integer := 1J 

11. Initialize variables: var a := 1; 

12. Declaring local variables in a block. 
13. Declare the loop parameter in the loop header: for var i := 1 

http://ptaskbook.com/
http://ptaskbook.com/


to 10 do, foreach var x in a do. 

14. The lock operator, which provides stream synchronization. 

15. Methods in Records. 
16. Field initializers in classes and records. 
17. Generalized classes (generics). 
18. Implemented typed files (unlike Delphi Prism, where they are 

removed). 
19. Simplified module syntax. 
20. Description of methods within a class or record interface. 
21. Interface write implementation. 
22. Expansion methods. 
23. Lambda expressions. 

Modified 
1. Only abbreviated calculation of logical expressions. 
2. A different foreach syntax. 

3. .NET-style interfaces. 

4. Another syntax for overloading operations. 
5. Static class methods instead of class methods. Absence of 

Tciass type. 

6. Destructors are left only for compatibility and do not perform any 
actions. 

7. The object type is synonymous with System.Object. 

8. The type exception is synonymous with System.Exception. 

9. Index string from 1, switch directive to index from 0. 
10. The write procedure outputs all types. 

11. Structural type equivalence for procedural variables, dynamic 
arrays, typed pointers, and sets (in Delphi Object Pascal, name 
type equivalence except for open arrays). 

12. Arbitrary type-based sets (set of string). 
13. Prohibits the use of pointers to managed memory. 
14. Procedural variables (delegates) instead of procedures of 

object. 

15. You can use the Read, Write procedures to manipulate the file 

without any type of file. 
16. Array arrays differ in type from two-dimensional arrays (in 

particular, the entries a[i][j] and a[i,j] are not equivalent). 

17. Overload is performed without the overload keyword. 



18. All constructors are named Create. 

19. Automatic memory management with garbage collector (except 
for pointers to unmanaged memory). 

Not available 
1. Keywords and directives packed threadvar inline asm exports 

unsafe resourcestring dispinterface in out absolute dynamic 

local platform requires export message resident assembler 

safecall automated far near stdcall cdecl published stored 

contains implements varargs default deprecated package 

register dispid pascal writeonly and related features. 

2. The typecasting for variables: char(b) := 'd'. 

3. Ability to assign a subroutine address to a pointer. 

4. Notes with options. 
5. PChar strings. 

6. Ability to use @ operation for procedural variables. 
7. Variant types. 
8. Bestiary parameters (var a; const b). 

9. Open arrays (not to be confused with dynamic arrays!). 
10. Methods related to messages. 
11. Nested class definitions.



PascalABC.NET language description  

PascalABC.NET is a next-generation Pascal language that includes 
all the features of the standard Pascal language, extensions to 
Delphi Object Pascal, and some native extensions, as well as some 
features that make it compatible with other .NET languages. 
PascalABC.NET is a multi-paradigm language - you can program in 
a variety of styles: structured programming, object-oriented 
programming, functional programming. 

In addition, the presence of a large number of standard .NET class 
libraries forms a style that is noticeably different from that of 
standard Pascal. 

This section describes the PascalABC.NET language.



Basics 

 

• Program structure 
• Expressions and operations



 

Data types  
• Overview of types 
• Entire types 
• Substance types 
• Logic type 
• Symbol type 
• String type 
• Enumerated and range types 
• Static arrays 
• Dynamic arrays 
• Records 
• Corteges 
• Multitudes 
• Files 
• Sequences 
• Signposts 
• Procedural type 
• Classes 
• Dimensional and reference types 
• Memory management and garbage collection



 

Operators  
• Assignment operators 
• Compound operator 
• Variable description operator 
• Loop statement 
• Operator of the cycle for 
• The foreach loop operator 
• The while and repeat loop operators 
• Conditional if statement 
• Variant case operator 
• Procedure call operator 
• The try except statement 
• The try finally operator 
• Operator raise 
• The break, continue, and exit operators 
• yield operator 
• The yield sequence operator 
• The goto operator 
• Operator lock 
• Operator with 
• Empty operator



 

Structural programming  
• Procedures and functions 
• Modules 
• Dll Libraries 
• Documentary comments



 

Object-oriented programming  
• Overview of classes and objects 
• Inheritance 
• Polymorphism 
• Generalized types 
• Abstract methods and classes 
• Anonymous classes 
• Autoclasses 
• Exception handling 
• Expansion methods 
• Interfaces 
• Attributes (in development)



 

Functional programming  
• Lambda expressions 
• Capturing variables 
• Sequences 
• Sequence methods



 

Standard modules  
• PABCSystem module



 

Additional questions  
• Scope of the identifier 
• The compiler's initiatives 
• Open MR



 

Program structure: overview  

The program contains keywords, identifiers, and comments. 
Keywords are used to highlight syntactic constructions and are 
highlighted in bold in the editor. Identifiers are names of program 
objects and cannot coincide with keywords. 

The program in PascalABC.NET looks like this: 

program NAME; 

uses section 

descriptions section begin 

end operators. 

The first line is called the program header and is optional. 

Theusessection consists of several consecutive uses sections, each 
starting with the keyword uses, followed by a list of module names 

and .NET namespaces, listed separated by commas. 

The descriptions section may include the following subsections: 
• variable description section 
• constant description section 
• type description section 
• tag description section 
• Procedures and functions section 

These subsections follow one another in no particular order. 

This is followed by the begin/end block, inside which are operators 

separated one from the other by a semicolon. Among the operators 
there may bea variable description operator, which allows you to 
describe variables within the block. 

The uses section and the descriptions section may be missing. 

For example: 
program MyProgram; 

var a,b: integer; x: real; 

begin 

readln(a,b); 

x := a/b; writeln(x); 

end. 

or 



 

uses GraphABC; 

begin 

var x := 100; 

var y := 100; 

var r := 50; 

Circle(x,y,r); 

end.



 

Identifiers and keywords  

Identifiers are names of programs, modules, procedures, functions, 
types, variables and constants. An identifier is any sequence of Latin 
letters or numbers beginning with a letter. A letter is also the 
underscore character "_". 

For example, ai, _h, bi23 are identifiers and ia is not. 

Each identifier has an identifier scopeassociated with it. 

The following words are keywords, used to formalize language 
constructs and cannot be used as identifiers: 
and array as auto begin case class constructor constructor 

destructor divor do downto else end event except 

extensionmethod file finalization finally for foreach function 

goto if implementation inherited initialization interface is 

label lock loop mod nil not of operator or procedure property 

program raise record repeat sealed set sequence shl shr sizeof 

template then to try typeof until uses using var where while 

with xor 

A number of words are contextually key (they are key only in some 
context): 
abstract default external forward internal on overload override 

params private protected public read reintroduce unit virtual 

write 

Contextual keywords can be used as names. 

Some keywords coincide with the most important names of the .NET 
platform. So in PascalABC.NET it is possible to use these names 
without conflicting with the keywords. 

The first way is to use a qualified name. For example: 
var a: System.Array; 

In this context, the word Array is a name within the System 

namespace, and there is no conflict with the array keyword. 

The second way is to use the special symbol & before the name. In 

this case the name can coincide with the keyword. For example: 
uses System; 

var a: &Array;



 

Comments Off on  
Comments are portions of code ignored by the compiler and used by 

the programmer to explain the program text. There are several types 

of comments in PascalABC.NET. 

The sequence of characters between curly braces { } or characters 

(* and *) is considered a comment: 
{ This is a commentary } 

(* This is also a commentary.) 

Any sequence of characters after // and before the end of the string 

is also considered a comment: 
var Version: integer; // Product version 

Comments of different types can be nested: 

{ This is another (* comment *)}



 

Variable description  
Variables can be described in the descriptions section as well as 
directly inside any begin/end block. 

The variable description section begins with the var keyword, 

followed by elements of the description kind 

list of names: type ; 

or 

name: type := expression ; 

or 

name: type = expression; // for Delphi compatibility 

or 

name := expression ; 

The names in the list are listed, separated by commas. For example: 
var a,b,c: integer; d: real := 3.7; s := 'PascalABC forever'; 

al := new List<integer>; p1 := 1; 

In the last three cases, the type of the variable is automatically 
determined by the type of the right part. 

Variables can be described directly within a block. Such descriptions 
are called intrablock descriptions and represent a variable 
description operator. 

In addition, loop variables can be described in the header of the for 

and foreach statements. 

Global variables are initialized with zero values. This is not 
guaranteed for local variables - they must be initialized explicitly.  



 

Combining variable description and tuple assignment  
You can combine tuple assignment (unpacking a tuple into variables) 
with variable description: 

var t := (1,2); 

(var a, var b) 

or 

Unpacking a tuple into variables is often used when returning a 
tuple function: 

 
var (S,P) := SP(2,3); 

Constants description  
The section describing named constants begins with the service 
word const, followed by elements of the description kind 

constant name = value ; 

or 

constant name: type = value ; 

For example: 
const Pi = 3.14; Count = 10; Name = 'Mike'; DigitsSet = 

['0'...'9']; Arr: array [1...5] of integer = (1,3,5,7,9); 

Rec: record name: string; age: integer end = (name: 

'Ivanov'; age: 23); 

Arr2: array [1..2,1..2] of real = ((1,2),(3,4));

(1,2); 

var (a,b) (1,2); 

function SP(a,b: real) (a*b,2*(a+b)); 



 

Label Description  
The label section starts with the reserved word label, followed by a 

comma-separated list of labels. Identifiers and positive integers can 
be used as labels: 

label a1,l2,777777; 

Labels are used to jump in thegotostatement.



 

Description of types  
The type section begins with the service word type, followed by 

lines like 

type name = type ; 

For example, type arr10 = array [1...10] of integer; myint = 
integer; 

pinteger = Ainteger; 

IntFunc = function(x: integer): integer; 

Usually a description is used for composite types (static arrays, 
procedural variables, records, classes) to give a name to a complex 
type. If named type equivalence is defined for a type, this is the only 
way to pass variables of that type to a subroutine. 

It is obligatory to use type descriptions for classes: 
type A = class 

1: integer; 
constructor Create(ii: integer); 

begin i:=ii; end; 

end; 

If the type description is used simply to replace one name with 
another, these types are called type synonyms: 

type int = integer; double = real; 

Type descriptions can be generalized, i.e., include parameters-
types in angle brackets after the type name. 

type 
Dict<K,V> = Dictionary<K,V>; 

Arr<T> = array of T; 

Using such a type with a specific type parameter is called type 
instantiation: 

var 

a: Arr<integer>; 

d: Dict<string,integer>; 

When describing recursive data structures, a type pointer may 
appear before the type itself in the definition of another type: 

type 
PNode = ATNode; 

TNode = record 

data: integer; 

next: PNode; 



 

end; 

It is important that the definitions of both types are in the same type 

section. 

Unlike Delphi Object Pascal the following recursive description is 
correct: 

type 
TNode = record 

data: integer; 

next: ATNode; 

end; 

Note that for reference types (classes) it is allowed to describe a 
field with a type that matches the type of the current class: 

type Node = class data: integer; next: Node; 

end;



 

Scope of the identifier  
Any identifier used in the program must be described beforehand. 
Identifiers are described in the descriptions section. Identifiers for 
variables can also be described within a block. 

The main program, subprogram, block, module, class form the so-
called namespace - an area in a program in which the name must 
have a single description. Thus, two identical names cannot be 
described in the same namespace (except for overloadedsubroutine 
names). In addition, there are explicit namespace definitions in .NET 
assemblies. 

The scope of an identifier (i.e., the place where it can be used) 
extends from the moment of description to the end of the block in 
which it is described. The scope of a global identifier described in a 
module extends to the entire module, as well as to the main program 
to which the module is connected in the uses section. 

In addition, there are variables defined in the block and associated 
with some constructs (for, foreach). In this case the action of 

variable i extends to the end of the corresponding construct. So, the 
following code is correct: 

var a: array of integer := (3,5,7); for i: integer := 1 to 9 

do 

write(a[i]); 

foreach i: integer in a do write(i); 

An identifier with the same name defined in a nested namespace 
hides an identifier defined in an external namespace. For example, in 
code 

var i: integer; 

procedure p; 

var i: integer; 

begin 

i := 5; 

end; 

value 5 will be assigned to the variable i described in the procedure 

p; inside the procedure p it is not possible to refer to the global 

variable i. 

Variables described within a block cannot have the same names as 
variables in the descriptions section of that block. For example, the 



 

following program is wrong: 
var i: integer; 

begin 

var i: integer; // error end. 

In contrast, derived classes can define members with the same 
names as in base classes, and their names hide the corresponding 
names in base classes. The keyword inherited is used to refer to 
the same name member of the base class from the method of the 
derived class: 

type 

A=class 

i: integer; procedure p; begin 

i := 5; 

end; 

end; 

B=class(A) 

i: integer; procedure p; begin 

i := 5; 

inherited p; 

end; 

end; 

The algorithm for finding a name in a class is as follows: first, the 
name is searched in the current class, then in its base classes, and if 
not found, then in the global scope. 

The algorithm for finding a name in the global scope when there 
are several connected modules is as follows: first, the name is 
searched for in the current module, then, if not found, by the chain of 
connected modules in the order from right to left. For example, in the 
program 

uses unit1,unit2; 

begin 

id := 2; 

end. 

The description of the variable id will be searched first in the main 

program, then in the unit2 module, then in the uniti module. In this 

case, different modules may have different id variables described. 
This situation means that uniti forms an external namespace, the 

unit2 namespace is directly nested in it, and the main program 

namespace is nested in unit2. 



 

If, in the last example, both uniti and unit2 define id variables, it is 

recommended to specify the variable name by the name of the 
module using the ImModule construct. Name: 

uses unit1,unit2; 

begin 

unitl.id := 2; 

end.



 

Overview of types  

Types in PascalABC.NET are divided into simple types, structured 
types, pointer types, procedural types and sequences. 

Simple types include integer and real types, logical, character, 
enumerated, and range types. 

A data type is called structured if one variable of that type can 
contain many values. 

Structured types include arrays, strings, records, tuples, sets, files, 
and classes. 

A special type of data is the sequence, which stores in essence the 
algorithm for obtaining sequence data one by one. 

All simple types except the real type are called chunk types. Only 
values of these types can be indexes of static arrays and parameters 
of the for loop. In addition, for ordinal types, the functions Ord, Pred, 

and Succ are used, as well as the procedures Inc and Dec. 

All types except the pointer types are derived from the object type. 

Each type in PascalABC.NET has a mapping to a.NETtype.The 
pointer type belongs to unmanageable code and is modeled by the 
void* type. 

Most types in PascalABC.NET are subdivided into dimensional 
types, reference types, and pointer types. A comparison of 
dimensional and reference types is given here. 

In addition, PascalABC.NET has several types inherited from Delphi 
Object Pascal that are difficult to categorize as dimensional or 
reference types. These are static arrays, sets, dimensional strings 
and files. In terms of their representation in memory, they are of 
reference type, but in terms of behavior, they are of dimensional 
type. 

Dimensional and reference types  

Most types in PascalABC.NET fall into two large groups: 
dimensional and reference. 



 

Dimensional types include all simple types and records. More 
precisely, all dimensional types are inherited from the .NET type 
System.ValueType. 

Reference types include strings, dynamic arrays, tuples, classes, 
sequences, and proceduraltypes. More precisely, all reference types 
are inherited from the .NET type System.Object and are not inherited 
from System.ValueType. 

Dimensional and reference types differ in the following 
characteristics: 

• memory allocation 
• memory management 
• assignment 
• comparison 
• subprogramming 

In addition, PascalABC.NET has several types inherited from Delphi 
Object Pascal that are difficult to categorize as dimensional or 
reference types. These are static arrays, sets, dimensional strings 
and files. In terms of their representation in memory, they are of 
reference type, but in terms of behavior (assignment, comparison, 
subroutines), they are of dimensional type. 

Dimensional types are more efficient in calculations: they occupy 
less memory and operations performed on small dimensional types 
are most efficient. Reference types are more flexible: memory is 
allocated for them dynamically while the program is running and is 
released automatically when the object of reference type is no longer 
used. 

Memory allocation  
The memory for a variable of dimension type is allocated on the 
program stack. For global variables, memory is allocated at program 
start, for local variables - at the moment of subprogram call. A 
variable of the dimensional type stores the value of this type. 

var i: integer; // allocate memory for i on the program stack 

i := 5; 



 

A reference type variable stores a reference to an object of some 
class in dynamic memory. If it is not initialized, it stores a special 
value nil (null reference). To initialize reference variables a 
constructor call of the corresponding class is used: 

type Person = auto class name: string; 

age: integer; 

end; 

var p: Person; // p stores the value nil, no memory for the 

object is allocated 

p := new Person('Ivanov',2 0),- // the constructor allocates 

memory for the object and writes a reference to it in a 

variable



 

Features of PascalABC.NET  

Strings in PascalABC.NET are not initialized with nil by default, but 
with an empty string.



 

Assignment  

When assigning variables of a dimensional type, the value of that 
type is copied. 

type Point3 = record x,y,z: real; 

end; 

var p1,p2: Point3; 

pl.x := 1; pl.y := 2; p1.z := 3; p2 := pl; // all fields 

are copied Print(p2); // (1,2,3) 

p1.x := 4; p1.y := 5; p1.z := 6; 

Print(p2); // (1,2,3) - p2 does not change, because it 

occupies another memory on the stack 

When you assign variables of reference type, a reference is copied, 
so after assignment, both references end up referring to the same 
object in dynamic memory: 

type Point3 = auto class x,y,z: real; 

end; 

var p1,p2: Point3; // variables store nil reference p1 := 

new Point3(1,2,3); 

p2 := p1; // the reference is copied, after which p2 is 

referenced 

to the same object as p1 

Print(p2); // (1,2,3) 

p1.x := 4; p1.y := 5; p1.z := 6; 

Print(p2); // (4,5,6) - the object has changed, p2 refers 

to the same object as p1 

Static arrays, sets, and dimension strings behave like dimension 
types when assigned. Thus, when assigning one static array to 
another, all elements are copied: 

var a,a1: array [1...1000000] of integer; 

a1 := a; // all 1000000 elements are copied (long)



 

Equality comparison  

The equality and inequality comparison of objects of dimensional 
type compares their values. In particular, two variables of record type 
are equal if all fields of those records are equal. 

type PersonRec = record name: string; 

age: integer; 

end; 

var p,p1: PersonRec; 

p.name := 'Ivanov'; p.age := 20; 

pl.name := 'Ivanov'; p1.age := 20; 

writeln(p1 = p); // True 

Two variables of reference type are equal by default if they refer to 
the same object. 

type Person = auto class 

name: string; 

age: integer; 

end; 

var p := new Person('Ivanov',20); 

var p1 := new Person('Ivanov',20); 

writeln(p1 = p); // False 

However, the comparison operation can be overloaded. For 
example, for strings and tuples the equality comparison is redefined 
so that not references but values are compared.



 

Transfer to subprograms  
When transferring dimensional types by value, the value of the 
actual parameter is copied to a variable - a formal parameter. If the 
dimensional type has a large size, it can take a long time, so the 
dimensional type in this case is transferred by reference to the 
constant: 

type Point3 = record x,y,z: real; 

end; 

procedure PrintPoint(const p: Point3); 

begin 

Print(p.x,p.y,p.z) end; 

Reference types are usually passed to a subprogram by value. 
When such parameters are passed, the reference is copied, 
resulting in the formal and actual parameters referring to the same 
object. 

procedure Change666(a: array of integer); 

begin 

a[0] := 6 6 6; 

end; 

In this case, as a result of changing a formal parameter within a 
subprogram, the content of the corresponding actual parameter 
when the subprogram is called also changes. 

Reference types are passed to a subprogram by reference only if 
the reference itself changes within the subprogram: 

procedure CreateA(var a: array of integer); begin 

a := new integer[10]; 

end; 

Static arrays, dimensional strings, and sets behave like dimensional 
types when passed to subroutines. For example, it is inefficient to 
try to pass a static array by value into a subroutine, because a lot of 
data is copied. Therefore, static arrays are always passed by 
reference: 

type Arr = array [1...100] of integer; 

procedure PrintArray(const a: Arr; n: integer); 

begin 

for var i:=1 to n do Print(a[i]) end;



 

Memory management  

Dimensional types are allocated on the program stack, so they do not 
need special memory management. Global dimensional variables are 
allocated memory the whole time of program operation. Local 
dimensional variables are allocated memory at the moment a 
subprogram is called, and are released at the moment the 
subprogram is finished. 

The memory managementfor reference types is done automatically 
by the garbage collector. The garbage collector is started at an 
unspecified point in time, when the managed memory is no longer 
sufficient. It returns to the pool of unused memory those objects that 
are no longer referenced, and then defragments the remaining 
memory, resulting in dynamic memory is always defragmented and 
its allocation when the constructor is called is almost instantaneous. 

Static arrays, dimensional strings, sets and files are referential in 
terms of memory allocation and the memory occupied by values of 
this type is also managed by the garbage collector. 

Entire types  
Below is a table of integer types that also contains their size and range of 
valid values. 

Type Size, byte Value range 

shortint 1 -128..127 
smallint 2 -32768..32767 

integer, 
longint 4 -2147483648..2147483647 

int64 8 -
9223372036854775808..9223372036854775807 

byte 1 0..255 
word 2 0..65535 

longword, 
cardinal 4 0..4294967295 

uint64 8 0..18446744073709551615 

Biginteger variable unrestricted  

The types integer and longint as well as longword and cardinal are 



 

synonymous. 

The maximum values for each integer type are defined as external  
стандаstandard constants: MaxInt64, Maxint, MaxSmallint, MaxShortInt, 

MaxUInt64, MaxLongWord, MaxWord, MaxByte. 

For each integer type t except Biginteger, the following constants are 
defined as static members: 

T.Minvalue is a constant representing the minimum value of type t; 

T.Maxvalue is a constant representing the maximum value of type t; 

Static functions are defined for each integer type t: T.Parse(s) - a 

function that converts a string representation of a number to a value of 

type t. If the conversion is not possible, an exception is generated; 

T.TryParse(s,res) is a function that converts a string representation of 

a number to a value of type t and writes it to the res variable. If the 

conversion is possible, it returns True, otherwise it returns False. 

In addition, an instance function ToString is defined for t, which returns a 

string representation of a variable of that type. 

Constants of integer type can be represented both in decimal and 
hexadecimal form, with a $ sign in front of the hexadecimal constant: 

 253456 $FFFF

https://calibre-pdf-anchor.n/%23Standard%20constants.html
https://calibre-pdf-anchor.n/%23Standard%20constants.html


 

Substance types  
Below is a table of real types with their size, number of significant 
digits and range of valid values: 

 

Quantity 
Type Size, 

byte 
significant 
digits 

Value range 

real 8 15-16 -1.810308.. 1,8-10308 
double 8 15-16 -1.810308.. 1.8-10308 

single 4 7-8 -3.41038.. 3.4-1038 
-79228162514264337593543950335 

decimal 16 28-29 .. 
79228162514264337593543950335  

The types real and double are synonymous. The smallest positive 

number of type real is approximately 5L10-324, for type single it is 

approximately 1.4-10'
45. 

The maximum values for each real type are defined as external  
стандаstandard constants: MaxReal, MaxDouble and MaxSingle. 

For each real type R, in addition to decimal, the following constants 

are also defined as static class members: 

R.Minvalue is a constant representing the minimum value of type 

R; 

R.Maxvalue is a constant representing the maximum value of type 

R; 

R.Epsilon is a constant representing the smallest positive number 

of type R; 

R.NaN is a constant that does not represent a number (occurs, for 

example, when dividing 0/0); 

R.NegativeInfinity is a constant that represents negative infinity 

(occurs, for example, when 

division -2/0); 

R.positiveinfinity is a constant representing positive infinity 

(occurs, for example, when dividing 2/0). 

https://calibre-pdf-anchor.n/%23Standard%20constants.html
https://calibre-pdf-anchor.n/%23Standard%20constants.html


 

The following static functions are defined for each real type R except 
decimal: 

R.isNaN(r) - returns True if r stores the value R.NaN, and False 
otherwise; 

R.isinfinity(r) - returns True if R.Positiveinfinity or 

R.NegativeInfinity is stored in r, and False otherwise; 

R.IsPositiveInfinity(r) - returns True if r contains the value 

R.PositiveInfinity, and False otherwise; 

R.IsNegativeInfinity(r) - returns True if R.NegativeInfinity is 

stored in r, and False otherwise; 

The following static functions are defined for each real type R: 

R.Parse(s) is a function that converts a string representation of a 
number to a value of type R. If the conversion is not possible, an 

exception is generated; 

R.TryParse(s,res) is a function that converts a string 
representation of a number to a value of type R and writes it to 

the res variable. If the conversion is possible, it returns True, 

otherwise it returns False. 

In addition, an instance function ToString is defined that returns a 

string representation of a variable of type R. 

Real constants can be written in either floating-point or exponential 
form: 

 1.70.0132 .5e3 (2500) 1.4e-1 (0.14) 

Logic type  

Values of the boolean type take up 1 byte and take one of the two 

values given by the predefined constants True and False. 

Static methods are defined for the logical type: 

boolean.Parse(s) is a function that converts a string 

representation of a number to a boolean value. If the conversion 

is not possible, an exception is generated; 

boolean.TryParse(s,res) is a function that converts a string 

representation of a number to a value of boolean type and writes 



 

it to res variable. If the conversion is possible, it returns True, 

otherwise it returns False. 

In addition, an instance function Tostring is defined that returns a 

string representation of a variable of type boolean. 

The logical type is ordinal. Specifically, False< True, Ord(False) =0, 

Ord(True) = 1.



 

Symbol type  
The char character type occupies 2 bytes and stores a Unicode 

character. Characters are implemented by the System.Char type of 

the .NET platform. 

The + operation for characters means concatenation (merging) of 
strings. For example: 'a'+'b' = 'aь'. As for strings, if you add a 

number to a character, the number is preconverted to a string 
representation: 

var s: string := ' '+15; // s = ' 15' 

var s1: string := 15+' '; // s = '15 ' 

Over the characters are defined comparison operations < > <= >= = 

<> , which compare character codes: 

'a'<'b' // True '2'<'3' // True 

The standard functions Chr and Ord are used to convert between 

characters and their Unicode codes: 

Chr(n) is a function that returns a character with the code n in 

Unicode; 
Ord(c) is a function that returns a word type value representing 

the Unicode code of the c character. 

The standard functions ChrAnsi and OrdAnsi are used to convert 

between characters and their codes in Windows encoding: 

ChrAnsi(w) - returns the character with the code w in Windows 

encoding; 
OrdAnsi(c) - returns a byte value representing the code of the c 

character in Windows encoding. 

In addition, the #number expression returns a Unicode character with 

a number code (the number must be in the range 0 to 65535). 

Explicit type conversions play a similar role: 

char(w) returns the Unicode character code w; word(c) returns 

the Unicode character code c. 

СтандаStandard subroutinesfor working with symbols. 

Static char methods.

https://calibre-pdf-anchor.n/%23Subroutines%20for%20char.html


 

Enumerated and range types  

An enumerated type is defined by an ordered set of identifiers. 
typeName = (valuel, value2, ..., valuen); 

Values of an enumerated type occupy 4 bytes. Each value value is 

a constant of typeName that falls into the current namespace. 

For example: 
type 
Season = (Winter,Spring,Summer,Autumn); 

DayOfWeek = (Mon,Tue,Wed,Thi,Thr,Sat,Sun); 

A constant of an enumerated type can be referred to directly by 
name, or you can use the typeName.value entry, in which the name 

of the constant is specified by the name of the enumerated type to 
which it belongs: 

var a: DayOfWeek; 

a := Mon; 

a := DayOfWeek.Wed; 

Values of the enumerated type can be compared by <: 
DayOfWeek.Wed < DayOfWeek.Sat 

The functions Ord, Pred and Succ, and the procedures Inc and Dec 

can be used for values of the enumerated type. The Ord function 
returns the ordinal number of the value in the list of constants of the 
corresponding enumerated type, with numbering starting from zero. 

For an enumerated type, an instance function ToString is defined 

that returns a string representation of a variable of the enumerated 
type. When you output a value of the enumerated type with the 
write procedure, it also outputs a string representation of the 

enumerated type value. 

For example: 
type Season = (Winter,Spring,Summer,Autumn); 

var s: Season; 

begin 

Summer; 

writeln(s.ToString); // Summer writeln(s); // Summer 

end. 

A range type is a subset of values of an integer, character, or 
enumerated type and is described in the form a..y, where a is the 
lower bound, y is the upper bound of the interval type, a< y: 



 

var 

intI: 0...10; 

intC: ,a’.. ,z’; 

intE: Mon; 

The type, on the basis of which a range type is built, is called the 
base type for that range type. Values of a range type occupy the 
same amount of memory as values of the corresponding base type.



 

String type  

Strings are of type string, consist of a set of consecutive char 

characters and are used to represent text. 

Strings can be of any length. Characters in a string can be accessed 
using an index: s[i] denotes the i-th character in the string, 
numbering starts with one. If index i exceeds the string length, an 

exception is generated. 

Comparison operations are definedoverstrings: < > <= >= = <>. 
Comparison of strings for inequality is performed lexicographically: 
si < s2 if for the first non-matching character with number i 

si[i]<s2[i] or all characters of strings are matched, but si is shorter 

than s2. 

The + operation for strings means concatenation (merging) of 

strings. For example: 'Petya'+'Masha' = 'PetyaMasha'. 

The extended assignment operator += for strings adds a string - the 

right operand - to the end of the string - the left operand. 
For example: 

var s: string := 'Petya'; 

s += 'Masha'; // s = 'PetyaMasha' 

A string can be added to a number, with the number being 
preconverted to a string representation: 

s := 'Width: ' + 15; // s = 'Width: 15' 

s := 20.5 + ''; // s = '20.5' 

s += 1; // s = '20.51' 

The operation * is defined over strings and integers: s*n and n*s 

means the string formed from the string s repeated n times: 
s := '*'*10; // s = '**********' 

s := 5*'ab' // s = 'ababababab' s := 'd'; s *= 3; // s = 

'ddd' 

A slice taking operation is also defined over the lines. 

Strings are implemented by the System.String type of the .NET 

platform and are a reference type. Thus, all operations on strings are 
inherited from the System.string type. Unlike .NET strings, however, 

strings in PascalABC.NET are modifiable. For example, you can 
change s[i] (you can't in .NET). Furthermore, strings in 

PascalABC.NET behave like dimensional strings: after 



 

var s2 := 'Hello'; 

var si := s2; si[2] := 'a'; 

string s2 will not change. Here is what is called Copy On Write - 

when you change a character of the string, it creates a copy, so s1 
and s2 start referring to different parts of the memory. 

By default, strings are initialized with an empty string (in .NET with 
nil). However, it is possible to assign nil to a string, which is 

necessary to work with NET code. 

In addition, for compatibility with Delphi Object Pascal, 
PascalABC.NET implements short strings like string[n]. 

СтандаStandard subroutinesfor working with strings. 

Members of thestringclass.

https://calibre-pdf-anchor.n/%23Subroutines%20for%20string.html


 

Short Lines  

To be compatible with Delphi Object Pascal, PascalABC.NET 
implements short strings. The type string[n] is used to describe it, 

where n is an integer type constant indicating the string length (n <= 

255). For compatibility with Delphi Object Pascal, the standard 
module describes the type shortstring=string[255] . 

Short strings behave like normal strings except for a few things. 

1. Short strings, unlike normal strings, can be used as components 
of typed files. 

2. If a short string is assigned to a string that exceeds its size, it is 
truncated to the size of the original string. For example: 

var s: string[3] := 'ABCD'; 

Print(s); // ABC 

3. A short string, unlike a normal string, cannot be assigned nil. 
4. For efficiency, short strings should be passed to the subprogram 

by reference, using the modifier var or const. 

СтандаStandard subroutinesfor working with strings. 

Members of thestringclass.

https://calibre-pdf-anchor.n/%23Subroutines%20for%20string.html


 

Methods of type string  
The string type in PascalABC.NET is a class and contains a 

number of properties, static and instance methods, and extension 
methods. 

The methods of the string class assume that strings are indexed 

from zero. In addition, no method changes the string, because 
strings in .NET are immutable.



 

String class properties  

Property Description 

s[i] 

Index Property. 
Returns or allows 
you to change the i-
th character of the 
string s. Strings in 
PascalABC.NET are 
indexed from 1. 

Length: integer Returns the string 
length   



 

String class static methods  

The method Description 

String.Compare(s1,s2: string): integer 

Compares the lines 
si and s2. 
Returns a number <0 
if s1<s2, =0 if s1=s2 
and >0 if s1>s2 

String.Compare(s1,s2: string; ignorecase: 

boolean): integer 

Same. If 
ignoreorecase=True, 
then strings are 
compared without 
case of letters 

String.Format(fmtstr: string, params arr: 

array of objects): string; 

Formats arr 
parameters 
according to the 
format string fmtstr 

String.Join(ss: array of string; delim: 

string): string 
Returns the string 
obtained by merging 
ss strings using 
delim as a delimiter   



 

Instance methods of the String class  
Note that all instance methods do not change the string, as it may 
seem at first sight, but return the changed string if necessary. In 
addition, the characters in the term are considered to be indexed 
from zero. 

The method Description 

Contains(s: string): boolean 
Returns True if the 
current string 
contains s, and False 
otherwise 

EndsWith(s: string): boolean Returns True if the 
current string ends 
with s, and False 
otherwise 

IndexOf(s: string): integer 
Returns the index of 
the first occurrence 
of substring s in the 
current string or -1 if 
no substring is found 

IndexOf(s: string; start,count: integer): 

integer 
Returns index of the 
first occurrence of 
substring s in the 
current string or -1 if 
no substring is found. 
The search starts 
with the character 
number start and 
extends to 

  



 

 

to the following 
counts of characters 

IndexOfAny(cc: array of char): integer 

Returns the index of 
the first occurrence 
of any character in 
the array cc 

Insert(from: integer; s : string): string 

Returns the string 
obtained from the 
original string by 
inserting a substring 
of s at the from 
position 

LastIndexOf(s: string): integer 
Returns the index of 
the last occurrence 
of substring s in the 
current string 

LastIndexOf(s: string; 

integer): integer 
start,count: 

Returns index of the 
last occurrence of 
substring s in the 
current string or -1 if 
no substring is found. 
The search starts 
with the character 
number start and 
extends to the 
following count of 
characters 

LastIndexOfAny 
(a: 

array 
of char): integer 

Returns the index of 
the last occurrence 
of any character in 
the array cc 

PadLeft(n: integer): string Returns a string,   



 

 

obtained from the 
original string by 
right-aligning and 
filling it with spaces 
on the left side up to 
the length of n 

PadRight(n: integer): string 

Returns a string that 
was derived from the 
original string by left-
aligning and filling it 
with spaces to the 
right up to the length 
of n 

Remove(from,len: integer): string 

Returns the string 
obtained from the 
original string by 
deleting the len of 
the simoles from the 
from position 

Replace(s1,s2: string): string 

Returns the string 
obtained from the 
original string by 
replacing all 
occurrences of 
substring s1 with 
string s2 

Split(params delim: array of char): array 

of string 
Returns an array of 
strings, obtained by 
splitting the original 
string into words, 
with the delimiters 

  



 

 

any of the characters 
is used (the default is 
a space) 

StartsWith(s: string): boolean 
Returns True if the 
current line begins 
with s, and False 
otherwise 

Substring(from,len integer) : string 
Returns a substring 
of the original string 
from the position 
from the length of len 

ToCharArray: array of char 

  

Returns a dynamic 
array of source string 
characters 

ToLower: string Returns a lowercase 
string 

ToUpper: string 
Returns the string, 
converted to 
uppercase 

Trim: string 
Returns a string 
derived from the 
original string by 
removing leading 
and trailing spaces 

TrimEnd(params cc: array of char) string Returns a string 
derived from the 
original 

  



 

 

by removing the 
terminating 
characters from the 
cc array 

TrimStart(params cc: array of char): string 

Returns a string 
derived from the 
original string by 
removing the leading 
characters from the 
cc array 

  



 

Methods for extending the String class  
Some extension methods are standard for .NET, some are 
implemented only in PascalABC.NET. 

The method Description 

Inverse: string Returns the string 
inversion 

Print Outputs the letters of 
the string, separated 
by a space 

Println Outputs the letters of 
a line separated by a 
space, and jumps to 
a new line 

ReadInteger(var from: integer ): integer 

Reads an integer 
from the from 
position and returns 
it. The from position 
is incremented by the 
read element 

ReadReal(var from: integer): real 

Reads from a string 
a real number from 
the from position and 
returns it. The from 
position is 
incremented by the 
read element 

ReadWord(var from: integer): string 
 

  



 

 

Reads a word from a 
string before a space 
or before the end of 
the string from the 
from position and 
returns it. The from 
position is 
incremented by the 
element read 

 

Converts the string to 
an integer and 
returns it. 

ToInteger: integer If this is not possible, 
an exception is 
generated 

ToIntegers: array of integer 

The string must 
contain integers 
separated by spaces. 
An array of integers 
is returned. If this is 
not possible, an 
exception is 
generated 

 

 

 

Converts the string to 
a real and 

ToReal: real 

returns it. If it 
 

impossible, an 
exception is 
generated 

ToReals: array of real The line should 
  



 

 

stored real, 
separated by spaces. 
An array of real ones 
is returned. If this is 
not possible, an 
exception is 
generated 

 

Returns an array of 
strings, obtained by 
splitting the original 
string into words, 
with the delimiters 

 

any of the characters 
is used 

 

according to 
ToWords(params delim: array of char): The default is. 
array of string space). Unlike 

s.Split, it does not 
include empty strings 
in the resulting array. 
In particular, this 
means that words 
can be separated by 
several 

 

separators 

Arrays  

An array is a set of elements of the same type, each with its own 



 

number, called an index (there can be several indexes, then the 
array is called multidimensional). 

Arrays in PascalABC.NET are divided into static and dynamic 
arrays. 

An exception is always generated in PascalABC.NET when an 
index change is out of bounds.



 

Dynamic arrays  

Dynamic array description  
A dynamic array type is constructed as follows: 

array of element type (one-dimensional array) array [,] of 
element type (two-dimensional array) 
etc. 

A variable of dynamic array type is a reference. Therefore, a 
dynamic array needs to be initialized (allocated memory for 
elements).



 

Allocating memory for a dynamic array  

There are two ways to allocate memory for a dynamic array. The 
first method uses the new operation in the style of a class 

constructor call: 
var 

a: array of integer; 
b: array [,] of real; 

begin 

a := new integer[5]; 

b := new real[4,3]; end. 

The good thing about this method is that it allows you to combine 
array description and memory allocation: 

var 

a: array of integer := new integer[5]; 
b: array [,] of real := new real[4,3]; 

You can omit the type description in this case - the type is 
autodetected: 

var 

a := new integer[5]; b := new real[4,3]; 

The second way to allocate memory for a dynamic array uses the 
standard setLength procedure: 

SetLength(a,10); 

SetLength(b,5,3); 

The elements of the array are filled with default values. 

The SetLength procedure has the advantage that when it is called 

again, the old contents of the array are preserved.



Initializing a dynamic array 

 

You can initialize a dynamic array when allocating memory for it 
with the new operation: 

a := new integer[3](1,2,3); 

b := new real[4,3] ((1,2,3),(4,5,6),(7,8,9),(0,1,2)); 

Initialization of a dynamic array at the time of description can be 
done in abbreviated form: 

var 

a: array of integer := (1,2,3); 
b: array [,] of real := ((1,2,3),(4,5,6),(7,8,9), 

(0,1,2)); 

c: array of array of integer := ((1,2,3),(4,5),(6,7,8)); 

This allocates memory for the number of elements specified on the 
right. 

The easiest way to initialize a one-dimensional array is to use the 
standard functions Seq..., which allocate memory of the desired 
size and fill the array with the specified values: 

var a := Arr(1,3,5,7,8);  // 

integer 

var s := Arr('Ivanov','Petrov','Sidorov'),- 

// string 

var b := ArrFill(777,5);  // 

[777,777,777,777,777] 

var r := ArrRandom(10);  // 

  

10 random integers in the range from 0 to 99 

In the same style you can initialize arrays of arrays: 
var a := Arr(Arr(1,3,5),Arr(7,8),Arr(5,6)); // array of 

array of integer

array of 

array of 

b = 

fill in 



 

Length of the dynamic array  
A dynamic array remembers its length (an n-dimensional dynamic 
array remembers the length for each dimension). The length of an 
array (the number of elements in it) is returned by the standard 
Length function or the Length property: 

l := Length(a); 

l := a.Length; 

For multidimensional arrays, the length for each dimension is 
returned by the standard Length function with two parameters or by 

the GetLength(i) method : 
l := Length(a,0); 

l := a.GetLength(O);



Output a dynamic array 

 

After memory allocation, the input of a dynamic array can be done 
traditionally in a loop: 

for var i:=0 to a.Length-1 do read(a[i]); 

You can enter a dynamic array using the standard function 
ReadSeqInteger: 

var a := ReadSeqInteger(10); 

In this case, a dynamic array is allocated memory of the required 
size.



Output a dynamic array 

 

The write procedure outputs a dynamic array by enclosing the 
elements in square brackets and separating them with commas: 

var a := Arr(1,3,5,7,9); 

writeln(a); // [1,3,5,7,9] 

An n-dimensional dynamic array is output so that each dimension 
is enclosed in square brackets:. 

var m := new integer[3,3] ((1,2,3),(4,5,6),(7,8,9)); 

writeln(m); // [[1,2,3],[4,5,6],[7,8,9]] 

A dynamic array can also be output using the Print or Println 
extensions: 

a.Println; 

The elements are separated by spaces by default, but you can 
change this by setting the Print parameter, which is the element 
separator. For example: 

a.Print(NewLine); 

displays each element on a separate line.



 

Array arrays  

If an array of arrays is declared 
var c: array of array of integer; 

then it can only be initialized with SetLength: 
SetLength(c,5); 

for i := 0 to 4 do 

SetLength(c[i],3); 

To initialize such an array with new 

enter the type name for an array of integer: 
type IntArray = array of integer; 

var c: array of IntArray; - -- 

c := new IntArray[5]; 

for i := 0 to 4 do 

c[i] := new integer[3]; 

Array initialization can also be done in abbreviated form: 
var 

c: array of array of integer := ((1,2,3),(4,5),(6,7,8));



 

Assigning dynamic arrays  

Dynamic arrays of the same type can be assigned to each other, 
with both reference variables pointing to the same memory: 

var al: array of integer; 

var a2: array of integer; al := a2; 

Note that structuralequivalence of types is adopted for dynamic 
arrays: dynamic arrays with the same structure can be assigned to 
each other and passed as parameters to subroutines. 

To assign one dynamic array to a copy of another array, use the 
standard copy function: 

al := Copy(a2);



 

Passing a dynamic array to a subprogram  

A dynamic array is usually passed to a subroutine by value because 
the variable itself is already a reference: 

procedure Squares(a: array of integer); begin for var i:=0 to 

a.Length-1 do 

a[i] := Sqr(a[i]); 

end; 

begin var a := Arr(1,3,5,7,9); Squares(a); 

end. 

A dynamic array is passed by reference only in one case: if it is 
created or recreated within a subprogram. In particular, this must be 
done if SetLength is called for a dynamic array within a subroutine: 

procedure Add(var a: array of integer; x: integer); begin 

SetLength(a,a.Length+1); 

a[a.Length-1] := x; end; 

begin var a := Arr(1,3,5,7,9); Add(a, 666); writeln(a); 

end. 

Subroutinesрограммы дfor working with дdynamic arrays 

Subroutinesрограммы дfor generating дdynamic arrays 

Extension methods for sequences 

methodsды for дdynamic arrays 

Static arrays  

Static array description  

Static arrays, unlike dynamic ones, set their size directly in the type. 
The memory for such arrays is allocated immediately when 
describing them. 

The static array type is constructed as follows: 

array [index type1, ... , type UHdeKcaN] of basic type 

The index type must be ordinal. Usually the index type is a range 
type and is represented as a..y, where a and y are constant 

https://calibre-pdf-anchor.n/%23Subroutines%20for%20array%20of%20T.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20array%20of%20T%20generation.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20array%20of%20T.html


 

expressions of integer, character or enumerated type. For example: 
type MyEnum = (w1,w2,w3,w4,w5); 

Arr = array [1...10] of integer; var a1,a2: Arr; 

b: array [,a'...,z',w2...w4] of string; 
c: array [1...3] of array [1...4] of real;



 

Initializing a static array  

You can also specify the initialization of the array with values in 
the description: 

var 

a: Arr := (1,2,3,4,5,6,7,8,9,0); 

cc: array [1..3,1..4] of real := ((1,2,3,4), (5,6,7,8), 

(9,0,1,2));



 

Assigning a static array  

Static arrays of the same type can be assigned to each other and 
the contents of one array will be copied to the other: 

al := a2;



Output static array 

 

The write procedure outputs a static array by enclosing the 
elements in square brackets and separating them with commas: 

var a: Arr := (1,2,3,4,5,6,7,8,9,0); 

var m := array [1..3,1..3] of integer := ((1,2,3),(4,5,6), 

(7,8,9)); 

writeln(a); // [1,2,3,4,5] 

writeln(m); // [[1,2,3],[4,5,6],[7,8,9]]



 

Passing a static array to a subprogram  

When you pass a static array to a subroutine by value, you also 
copy the contents of the array - the actual parameter into the array - 
the formal parameter: 

procedure p(a: Arr); // pass a static array by value - bad! 

- • •• 

p(a1); 

This is extremely wasteful, so it is recommended to pass static 
arrays by reference. If the array does not change within a 
subroutine, it should be passed as a reference to a constant; if it 
changes, it should be passed as a reference to a variable: 

type Arr = array [2...10] of integer; 

procedure Squares(var a: Arr); 

begin 

for var i:= Low(a) to High(a) do a[i] := Sqr(a[i]); 

end; 

procedure PrintArray(const a: Arr); 

begin 

for var i: = Low(a) to High(a) do 

Print(a[i]) end; 

var a: Arr := (1,3,5,7,9,2,4,6,8); 

begin 

Squares(a); 

PrintArray(a); 

end. 

The Low and High functions are used to access the lower and upper 
bounds of the dimensionality of the one-dimensional array.



Records 

 

A record is a set of elements of different types, each with its own 
name and called a record field.



 

Description of records  

The record type in the classical Pascal language is described as 
follows: 

record field descriptions end 

where the field descriptions have the same appearance as the 
variable description section without the var keyword. 

For example: 
type 

Person = record Name: string; Age: integer; 

end;



 

Variables of record type  

Record type variables store the values of all record fields in a 
contiguous memory block. 

To access record fields, dot notation is used: 
var p: Person; 

begin 

p.Name := 'Ivanov'; 

p.Age := 20; 

writeln(p); // (Ivanov,20) 

end. 

By default, the write procedure prints the contents of all the fields in 

the record in parentheses, separated by commas.



 

Methods and access modifiers for records  

In PascalABC.NET you can define methods and properties within 
records, and use access modifiers. Thus, the description of a record 
inPascalABC.NET looks like this 

record 

section1 

section2 
... end 

Each section has a view: 

access modifier of declaration fields description or methods description 

and properties description 

Theaccessmodifier in the first section may be missing, in which case 
the modifier public (all members are open) is implied. 

For example: 
type 
Person = record 

private 

Name: string; 

Age: integer; 

public 

constructor Create(Name: string; Age: integer); 

begin 

Self.Name := Name; 

Self.Age := Age; 

end; 

procedure Print; 

end; 

procedure Person.Print; 

begin 

writelnFormat('Name: {0} Age: {1}', Name, Age); end; 

As with classes, methods can be described both inside and outside 
the record body. In the example above, the constructor is described 
inside the record, while the Print method is declared inside and 
described outside the record body. The constructor method is 
always named Create and is intended to initialize the fields of a 
record.



 

Initializing records  

When describing a variable or constant of record type, you can use 
a record initializer (as in Delphi Object Pascal): 

const p: Person = (Name: 'Petrova'; Age: 18); 

var p: Person := (Name: 'Ivanov'; Age: 20); 

Record constructors have the same syntax as classes. However, 
unlike classes, calling a record constructor does not create a new 
object in dynamic memory, but only initializes the record fields: 

var p: Person := new Person('Ivanov',2 0),- 

More traditionally, a record defines a normal method, traditionally 
named init, that initializes the fields of the record: 

type Person = record - -- public procedure Init(Name: string; 

Age: integer); begin 

Self.Name := Name; 

Self.Age := Age; 

end; 

-- end; - -- 

var p: Person; 

p.Init('Ivanov',20);



 

Distinguishing records from classes  

A list of the differences between records and classes is given 

below: 1. A record is a dimensional type (variables of record type 

are placed on the stack). 

2. Records cannot be inherited; records cannot be inherited 
from either (note that records can, however, implement 
interfaces). In .NET, record type is implicitly assumed to be a 
descendant of System.ValueType and is implemented by 

struct-type. 
3. If no access modifier is specified in the record, the modifier 

public (all members open) is implied by default, and internal 

is implied in the class.



 

Output a variable of record type  
By default, the write procedure for a variable of record type 

outputs the contents of all its public properties and fields in 
parentheses, separated by commas. To change this behavior, you 
should override the Tostring virtual method of the object class, in 

which case it will be called when outputting the object. 

For example: 
type 
Person = record 

function ToString: string; override; 

begin 

Result := string.Format('Name: {0} Age: {1}', Name, 

Age); 

end; 

end; 

var p: Person := new Person('Ivanov',2 0),- writeln(p); // 

Name: Ivanov Age: 20



 

Assigning and passing as parameters to subroutines  

Since a record, unlike a class, is a dimensional type, assigning 
records copies the contents of the fields of one variable record to 
another: 

d2 := d1; 

Name equivalence of types is adopted for records: records that only 
have the same name can be assigned to each other and passed as 
parameters to subroutines. 

To avoid copying, those records that contain more than one field are 
passed to subprograms by reference. If the record does not change 
within a subroutine, then a reference to a constant is used, if it 
changes, then a reference to a variable: 

procedure PrintPerson(const p: Person); 

begin 

Print(p.Name, p.Age); 

end; 

procedure ChangeName(var p: Person; NewName: string); 

begin 

p.Name := Name; 

end;



 

Equality comparison  

Records of the same type can be compared for equality, and records 
are considered equal if the values of all fields are the same: 

type Person = record name: string; age: integer; 

end; 

var p1,p2: Person; 

begin 

pl.age := 20; 

p2.age := 20; 

pl.name := 'Ivanov'; 

p2.name := 'Ivanov'; 

writeeln(p1=p2); // True end.



 

Note  
Unlike Delphi Object Pascal, PascalABC.NET has no variant 
entries.



Corteges 

 

A tuple is a data type analogous to a record or class. Like a record 
or class, a tuple is a collection of elements of different types, but it is 
much easier to describe. In addition, the fields of a tuple have 
predefined names and are immutable: it is impossible to change the 
fields of a tuple after it has been created.



 

Type of motorcade  

The following entry is used for the tuple type: var t: 

(string,integer); 

This entry is similar to a declaration of an enumerated type. If the 
parentheses are new names, it is an enumerated type, and if the 
type names, it is a tuple type. 

Tuples are represented by the System.Tuple type of the .NET 

platform: 
var t: System.Tuple<string,integer>; 

However, this perception may change in the future.



 

Constructing values of tuple type  

Values of tuple type can be constructed as a comma-separated 
enumeration of the values that make up a tuple. For example: 

t := ('Ivanov',23); 

For values constructed in this way, auto-drawing of type works: 
var t1 := ('Ivanov',(5,3,4)); // tuple, second element 

of which is the motorcade



 

Withdrawal of motorcades  

As with the record output, the tuple output consists of parentheses 
and a comma-separated list of elements: 

writeln(t); // (Ivanov,23) 

writeln(tl); // (Ivanov,(5,3,4))



 

Access to tuple elements  

The elements (fields) of a tuple are named Iteml, Item2, etc: 
Print(t.Item1,t.Item2); 

The elements of a tuple can also be referred to by an index: 

Print(t[0],t[1]); 

The indices must be constant expressions. 

Once created, the tuple is unchanged: its fields cannot be changed: 

t[1] := 20; // error



 

Tuple assignment (unpacking tuple into variables)  
Values of tuple type can be unpacked into variables of 

corresponding types using tuple assignment: var t := 
('Ivanov',23); var name: string; var age: integer; (name,age) 

:= t; 

The last assignment that uses a parenthetical variable enumeration 

on the left side of the assignment operator is called a tuple 

assignment. The compiler replaces the tuple assignment with 

several consecutive single assignments: name := t[0]; age := 
t[1]; 

Using a tuple assignment changes the programming style. For 
example, to swap the values of two variables a and b, just write the 
following tuple assignment: 

(a,b) := (b,a); 

In a tuple assignment, the number of elements on the right is 

greater than the number of variables on the left: (a,b) := (1,2,3); 

A tuple assignment can be combined with a variable description: 
(var a, var b) := (1,2); 

or 
var (a,b) (1,2); 



 

Using tuples in functions  

Tuples allow you to package multiple values into one. This is useful if 
you need to pass multiple related values as a parameter or return 
multiple values from a function. 

For example, a function that calculates the area and perimeter of a 
rectangle can be written in the form: 

function SP(a,b: real) := (a*b,2*(a+b)); 

To take advantage of the result of such a function, it is convenient to 
use the unpacking of the tuple into variables with a description: 

var (S,P) := SP(2,3);



 

Multitudes  

A set is a set of elements of the same type. The elements of a set 
are considered disordered; each element can enter the set no more 
than once. 

PascalABC.NET has built-in and .NET library sets: HashSet<T> 
(unordered, insertion, deletion, accessory operations rate is O(1)) 
and SortedSet<T> (ordered, insertion, deletion, accessory 
operations rate is O(log(n)). 

The type of embedded set is described as follows: set of basic type 

Any type can be a base type, including string and class types. The 
exception is pointer types. 

For example: 
type ByteSet = set of byte; 

StringSet = set of string; 

Digits = set of '0'...'9'; 

SeasonSet = set of (Winter,Spring,Summer,Autumn); 

PersonSet = set of Person; 

Elements of a basic type are compared for equality as follows: for 
simple types, strings, and pointers, the values are compared; for 
structured types and classes, the values of all elements or fields are 
compared. However, if fields are of reference type, only their 
addresses are compared (shallow comparison). 

To construct an embedded set type value, the so-called set 
constructor is used, which has the form: 

[ list of values ] 

where the list can list either expressions of the basic type separated 
by commas, or (for ordinal types) their ranges in the form a..y, 

where a and y are expressions of the basic type. For example: 
var bs: ByteSet := [1,3,5,20...25]; fios: StringSet := 

['Ivanov', 'Petrov', 'Sidorova']; 

Values in the list can be absent, then the set is empty: 
bs: = []; 

An empty constant set [] is assignment-compatible with a set of any 

type. However, the type of the empty constant set is not 



 

automatically output: 
var bs: = []; // Error! 

The set defined by the set constructor can have elements of different 
types, for example: 

[1..4,5.5,'c','xyz',Winter..Autumn] 

In this case, the most common type is calculated and declared as 
the base type of the set. For example: 

[1...4,5.5] // set of real ['1','abc'] // set of string 

[1,'1'] // set of object 

Structural equivalence of types takes place for sets. Sets of integers 

and sets based on a type and its range subtype or based on two 

range types of one basic type are implicitly converted to each other. 

If, when s := s1 is assigned, the set s1 contains elements that are 

not in the range of values of the basic type for the set s, they are cut 

off. 

For example: 
var st: set of 3...9; 

st := [1...5,8,10,12]; // st will contain values [3...5,8] 

The in operation checks if an element belongs to a set: 
If Wed in best days then ... 

The operations + (union), - (difference), * (intersection), = 
(equality), <> (inequality), <= (non-strict nesting), < (strict nesting), 

>= (non-strict contains) and > (strict contains) are defined for sets. 

The write procedure outputs all elements of a set. For example, 
Write(['Ivanov', 'Petrov', 'Sidorova']); 

outputs ['Ivanov', 'Petrov', 'Sidorova'], with the data sorted in 

ascending order, if possible. 

You can use a foreach loop to search for all elements of the set, 

and the data are searched in some internal order: foreach var s in 
fios do Write(s,' '); 

To add an element x to the set s, use the construction s += [x] or 
the standard procedure include: Include(s,x). To remove an 

element x from the set s, use the construction s -= [x] or the 

standard procedure Exclude: Exclude(s,x) .



 

File Types  

A file is a sequence of items of the same type stored on disk. In 
PascalABC.NET there are two types of files - binary and text. Text 
files store characters separated on lines by #13#10 (Windows) and 
#10 (Linux). The sequence of characters to jump to a new line is 
stored in the NewLine constant. Binary files, in turn, are divided into 
typed and untyped files. 

To describe a text file, the standard name text is used, untyped 

files are of type file, and to describe a typed file, the construction 
file of type elements is used: 

var fl: file of real; f2: text; 

f3: file; 

Pointers, reference types, and record types containing reference 
fields or pointers cannot appear as element types in a typed file. 

Standard file procedures and functions are described in 
• subprogramsрограммы ввоInput 
• subroutinesрограммы вывоOutput 
• Common subroutinesрограммы дfor working with files 
• Subroutinesрограммы дfor working with text files 
• Subroutinesрограммы дfor working with дbinary files 
• Subroutinesрограммы дfor working with file names 
• Common file methods 
• Text file methods 
• Typed file methods 
• Binary methods 
• methodsды Typed file extension 

In addition, there are a number of classes in .NET related to 
working with files. These are found in the System.Text and 

System. 10.

https://calibre-pdf-anchor.n/%23Read%20subroutines.html
https://calibre-pdf-anchor.n/%23Write%20subroutines.html
https://calibre-pdf-anchor.n/%23Common%20subroutines%20for%20files.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20text%20files.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20binary%20files.html
https://calibre-pdf-anchor.n/%23Functions%20for%20file%20names.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20typed%20files.html


 

Sequences  

A sequence is a set of data that can be searched one by one in 
some order. Varieties of sequences include one-dimensional 
dynamic arrays an array of T, lists List<T> , LinkedList<T> , sets 

HashSet<T> and SortedSet<T>. 

The sequence type is constructed as follows: 

The sequence of TYPE Elements 

The sequences are read-only. If a sequence needs to be changed, 
a new sequence is generated and returned. 

The type sequence of T is synonymous with the .NET 

System.Collections.Generic.IEnumerable<T> type, and sequence is 

synonymous with the type object that supports the interface 
System.Collections.Generic.IEnumerable<T>.



 

Initializing the sequence  

The sequence is initialized using the стандаstandard functions Seq, 

SeqGen, SeqFill, SeqWhile, SeqRandom, SeqRandomReal, ReadSeqInteger, 

ReadSeqReal, ReadSeqString. For example: 
var s: sequence of integer; 

s := Seq(1,3,5); 

s.Println; 

s := SeqGen(1,x->x*2,10); 

writeln(s);

https://calibre-pdf-anchor.n/%23Subroutines%20for%20sequence%20generation.html


 

Storing the sequence  

The sequence is not stored entirely in memory. 
The sequence elements are generated algorithmically and are 
returned one at a time as they are traversed. 

Thus, in the code 
var s := SeqFill(1,10000000); 

writeln(s.Sum()); 

the second line will take most of the execution time, and the 
execution of the first line will be reduced only to remembering the 
algorithm for generating the sequence in the s variable.



 

Connecting sequences  

Two sequences of the same type can be joined by the + operation, 
with the second sequence added to the end of the first. For example: 

Seq(1,2,3) + Seq(5,6,7) 

Seq(1,2,3) + Arr(5,6,7) 

In addition, you can join a sequence of some type to a value of that 
type with the + operation as the first or last element of the sequence, 
for example: 

Seq(1,2,3) + 5 

3 + Seq(5,6,7) 

3 + Seq(5,6,7) + 9 

The + operation is a shortened version of the Concat operation. 

The multiplication operation by a number is also available for 
sequences: 

Seq(1,2,3) * 3 

means repeating the sequence 1 2 3 three times: 1 2 3 1 2 3 1 2 3



 

Cycle by sequence  

The sequence elements can be bypassed with a foreach loop: 
foreach var x in s do if x>2 then Print(x);



 

Assignment compatibility  

A sequence variable with elements of type t can be assigned a 

one-dimensional array of t, a list List<T> , a linked list 

LinkedList<T> , a set HashSet<T> or sortedset<T> , as well as an 

object of any class that supports the 
System.Collections.Generic.IEnumerable<T>.



 

Standard subprograms and methods  

For sequences available: 
• Sequence processing methods 
• Subroutinesрограммы дfor sequence 

generationдовательностей 
• Subroutinesрограммы дfor generating infinite sequences 
• methodsды Extension дfor sequencesдовательностей

https://calibre-pdf-anchor.n/%23Subroutines%20for%20sequence%20generation.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20sequence%20generation.html
https://calibre-pdf-anchor.n/%23Infinite%20sequences.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20sequence%20of%20T.html


 

Indicators  

A pointer is a memory cell that stores an address. In 
PascalABC.NET pointers are divided into typed (contain the 
address of a memory cell of a given type) and untyped (contain a 
memory address not associated with data of any particular type). 

The type of the pointer to type t is in the form of lt, for example: 
type pinteger = Ainteger; 

var p: Arecord r,i: real end; 

A bestiary pointer is described with the word pointer. 

To access a memory cell whose address stores a typed pointer, the 
dereferencing operation is used: 

var 

i: integer; pi: Ainteger; - -- 

pi := @i; // the pointer was assigned the address of the i 

variable 

piA := 5; // the variable i is assigned 5 

The dereferencing operation cannot be applied to a type-free pointer. 

A typed pointer can be implicitly converted to a typeless pointer: 
var p: pointer; pr: Areal; - -- 

p := pr; 

The inverse transformation can also be performed implicitly: 
pr := p; prA := 3.14; 

Pointers can be compared on equality (=) and inequality (<> ). To 

mark the fact that the pointer points nowhere, the standard constant 
nil (null pointer) is used : p := nil. 

Warning! Due to the peculiarities of the .NET platform, the t typed 

pointer type must not be referential or contain referential types at 
some level (for example, pointers to records that have one of the 
fields with a referential type are prohibited). The reason for this 
restriction is simple: pointers are implemented by unmanaged code 
that is not managed by the garbage collector. If the memory the 
pointer points to contains references to managed variables, they 
become invalid after the next garbage collection. Exceptions are 
dynamic arrays and strings that are handled in a special way. That is, 
you can make pointers to records that contain strings and dynamic 
arrays as fields.



 

Procedural type  

A type designed to store references to procedures or functions is 
called a procedural type, and a variable of this type is called a 
procedural variable. The main purpose of procedural variables is to 
store and indirectly call actions (functions) during program execution 
and pass them as parameters.



 

Description of the procedural type  

The description of the procedural type matches the header of the 
corresponding procedure or function without the name. For example: 

type ProcI = procedure (i: integer); 

FunI = function (x,y: integer): integer; 

A procedure variable can be assigned a procedure or function with a 
compatible type, for example: 

function Mult(x,y: integer): integer; 

begin 

Result := x*y; 

end; 

var f: FunI := Mult; 

You can also assign a lambda expression to a procedure variable 
with the appropriate number of parameters and type of return value: 

var f2: FunI := (x,y) -> x+2*y; 

You can then call the procedure or function through this procedure 
variable using the normal call syntax: 

write(f(2)); // 8 write(f2(3)); // 10



 

Synonyms for procedural types  

A number of synonyms are defined in the system module for  the 
most common proceduretypes.  Here are examples of their use: 

var f3: IntFunc := x -> 2*x-1; 

var f4: Func<integer,real> := x -> 2.5*x; 

var f3: Action<real> := x -> write(x,' '); 

var pr: Predicate<string> := s -> s.Length>0;

https://calibre-pdf-anchor.n/%23Standard%20types.html
https://calibre-pdf-anchor.n/%23Standard%20types.html


 

Abbreviated constructions for procedural types  

Abbreviated constructs are also defined for procedural types: 
() -> T; //  parameterless function returning T 

T1 -> T; //  function with parameter T1, returning 

T 

(T1,T2) -> T // function with parameters T1 and T2, 

returning T 

(T1,T2,T3) -> T // function with parameters T1, T2 and T3, 

returning T, etc. 

   () -> (); //procedure 

withoutparameters 

T1   -> (); //procedure  T1 

(T1,T2)    -> ()//procedure  T1 and T2 

(T1,T2,T3)  -> () //procedure parameters  T1, T2 

and  T3 

etc. 

Abbreviated constructs cannot describe procedural variables with 

parameters passed by reference. Structural equivalence of types is 

accepted for procedural variables: it is possible to assign to each 

other and pass as parameters procedural variables that coincide in 

structure (types and number of parameters, type of return value).



 

Procedural variables as parameters  

Usually procedural variables are passed as parameters to implement 
a callback - a subprogram call through a procedural variable passed 
as a parameter to another subprogram: 

procedure forall(a: array of real; f: real->real); begin 

for var i := 0 to a.Length-1 do 

a[i] := f(a[i]); 

end; 

forall(a,x->x*2); // multiply array elements by 2 

forall(a,x->x+3); // increase array elements by 3 

A procedure variable can store a null value, which is set by the 
constant nil. Calling a subroutine with a null procedural variable 

causes an error.



 

The += and -= operations for procedural variables  

Procedural variables are implemented through .NET delegates. 
This means that they can store multiple subroutines. The += and -

= operators are used to add/disconnect subroutines: 
pl += mult2; 

pl += add3; 

forall(a,p1); 

The subroutines in this case are called in attachment order: 
multiplication first, then addition. 

Disconnecting unattached subroutines does not perform any 
action: 

pl -= print; 

Besides, you can attach/unattach class and instance methods of 
classes to a procedural variable. In the latter case, a procedural 
variable in the object fields remembers some state, which changes 
between calls to the method associated with this procedural 
variable.



Example 

 

type 

A = class 

x0: integer := 1; 

h: integer := 2; 

procedure PrintNext; 

begin 

Print(x0); x0 *= h; end; 

end; 

begin 

var p: procedure; 

var al := new A(); 

p := al.PrintNext; 

for var i:=1 to 10 do p; 

// 1 2 4 8 16 32 64 128 256 512 end. 

This behavior is much easier to implement by capturing a 
variablewith a lambda expression: 

begin 

var x0 := 1; 

var p: Action0 := procedure -> begin Print(x0); x0 *= 2 

end; 

for var i:=1 to 10 do p; 

end.



 

Equivalence and compatibility of types  

Type Matching  
Types TI and T2 are said to coincide if they have the same name or 

are defined in the type section as TI = T2. Thus, in the descriptions 
type IntArray = array [1...10] of integer; 

IntArrayCopy = IntArray; 

var 

al: IntArray; 

a2: IntArrayCopy; 

b1,c1: array [1...15] of integer; 

b2: array [1...15] of integer; 

variables a1 and a2 and variables b1 and c1 have the same type, 

and variables y1 and y2 have different types.



 

Equivalence of types  
Types TI and T2 are said to be equivalent if one of the following 

conditions holds: 
1. TI and T2 are the same 

2. TI and T2 are dynamic arrays with matching element types 

3. TI and T2 are pointers with matching basic types 

4. TI and T2 are sets with matching basic types 

5. TI and T2 are procedural types with the same formal parameter 

list (and return value type for functions) 

If types are equivalent only if their names coincide, then we say that 
there is a name equivalence of types. If types are equivalent if their 
names are the same, they are said to be structurally equivalent. 
Hence, in PascalABC.NET we have name equivalence for all types 
except dynamic arrays, sets, typed pointers and procedural types, for 
which we have structure equivalence. Only if types TI and T2 are 

equivalent, an actual parameter of type TI can be substituted for a 

formal parameter of type T2.



 

Type compatibility  
Types TI and T2 are said to be compatible if one of the following 

conditions holds: 
1. TI AND T2 are equivalent to 

2. TI and T2 belong to integer types 

3. TI and T2 belong to the real types 

4. One of the types is a subrange of the other, or both are 
subranges of some type 

5. TI and T2 are sets with compatible basic types



 

Type Compatibility by Assignment  
A value of type T2 is said to be assignable to a variable of type t1 or 
type T2 is assignment-compatible with type TI if one of the following 

conditions holds: 
1. TI and T2 are compatible 

2. TI - real type, T2 - integer type 

3. TI - string type, T2 - character type 

4. T1 - pointer, T2 - typed pointer 
5. TI - pointer or procedural variable, T2=nii 

6. TI - procedure variable, T2 - procedure or function name with 

the corresponding parameter list 
7. TI, T2 are class types, one of which is a descendant of the 

other. Since in PascalABC.NET all types except pointers are 

descendants of the object type, you can assign a value of any 

type (except for pointers) to a variable of the Object type 

8. TI is the interface type, T2 is the class type that implements the 

interface 

If type T2 is assignment-compatible with type TI, it is also said that 

type T2 does not bring in type TI.  



 

Mapping to .NET types  
The PascalABC.NET standard types are implemented by the .NET 
class library types. Here is a table that lists the PascalABC.NET 
standard types and the .NET types. 

Type Type .NET 
PascalABC.NET 
int64 

uint64 

System.Int64 

System.UInt64 

integer, longint System.Int32 

longword, 
cardinal 
BigInteger 
smallint 

System.UInt32 

System.BigInteger 
System.Int16 

word shortint System.UInt16 

System.SByte 

byte boolean System.Byte 

System.Boolean 

real double 

System.Double 

System.Double 

char string 

object array of 

T record 

System.Char System.String System.Object T[] 

struct 



 

Expressions and operations: an overview  

An expression is a construction that returns a value of some type. 
Simple expressions are variables and constants. More complex 
expressions are constructed from simple ones using operations, 
function calls, and brackets. Data to which operations are applied 
are called operands. 

The following operations are available in PascalABC.NET: @, not, l, 

*, /, div, mod, and, shl, shr, +, -, or, xor, =, > , < , <> , <=, >=, as, 

is, in, as well as the new operation and the type cast operation. 
The operations @, -, +, l, not, type conversion and new are unary 

(have one operand), the others are binary (have two operands), the 
operations + and - are both binary and unary.



 

PascalABC.NET operations help  
• Arithmetic operations 
• Logical operations 
• Comparison operations 
• String operations 
• Bitwise operations 
• Operations with sets 
• Explicit type conversion operation 
• The operations is and as 
• Operation new 
• Operation @ get address 
• Operations with pointers 
• The typeof and sizeof operations 
• Cuts 
• Conditional operation 

The order in which operations are performed is determined by their 
priority. In PascalABC.NET there are four levels of priority of 
operations, defined in the priority table. 

• Table of operations priorities 

A number of operations for user-defined types can be overloaded. 
You can also overload operations for .NET-types if they have not 
been overloaded. 

• Overload operations



 

Arithmetic operations  
Arithmetic operations include binary operations +, -, *, / for real and integer numbers, binary operations 
div and mod for integers, and unary operations + and - for real and integer numbers. The type of 
expression x op y, where op is the sign of the binary operation +, -, or *, is determined from the following 
table: 

 

shortint byte smallint word integer longword int64 uint64 

shortint integer integer integer integer integer int64 int64 uint64 

byte integer integer integer integer integer longword int64 uint64 

smallint integer integer integer integer integer int64 int64 uint64 

word integer integer integer integer integer longword int64 uint64 

integer integer integer integer integer integer int64 int64 uint64 

longword int64 longword int64 longword int64 longword uint64 uint64 

int64 int64 int64 int64 int64 int64 uint64 int64 uint64 

uint64 uint64 uint64 uint64 uint64 uint64 uint64 uint64 uint64 

BigInteger BigInteger BigInteger BigInteger BigInteger BigInteger BigInteger BigInteger BigInteger 

single single single single single single single single single 

real real real real real real real real real 

decimal decimal decimal decimal decimal decimal decimal decimal decimal  
That is, if the operands are integers, the result is the shortest integer type required to represent all the 
values we get. 

When performing a binary operation with uint64 and a signed integer, the resulting type will be uint64, 

and an overflow may occur without causing an exception. 

For the / operation this table is corrected as follows: the result of dividing any integer by an integer is of 
type real. 

The same rules apply to div and mod operations, but the operands can only be integers. The rules for 
calculating div and mod operations are as follows: 

x div y is the result of integer division of x by y. More precisely, x div y = x / y, rounded to the 
nearest integer towards 0; x mod y is the remainder of an integer division of x by y. More precisely, x 
mod y = x - (x div y) * y. 

The unary arithmetic operation + for any integer type returns that type. Unary arithmetic operation - 
returns for integer types smaller or equal to integer, for longword and int64 - value of int64 type, for 

uint64 unary operation is not applicable, for single and real types - types single and real 
respectively. That is, the same result is the shortest type required to represent all obtained values.



 

Logical operations  
Binary operations include the binary operations and, or AND xor, 

and the unary operation not, which have operands of the boolean 

type and return values of the boolean type. These operations obey 
the standard rules of logic: a and is true only when a and b are true, 

a or is true only when either a or b is true, a xor is true only when 

only one of a and b is true, not a is true only when a is false. 

Expressions with and and or are calculated according to a short 

scheme: 

in the expression x and y if x is false, then the whole expression 

is false, and y is not evaluated; 
in the expression x or y if x is true, then the whole expression is 

true, and y is not evaluated.



 

Bitwise operations  
Bitwise operations include binary operations and, or, not, xor, shl, 

shr. They perform bitwise manipulations with operands of integer 
type. The resulting type for and, or, xor will be the smallest integer, 

including all possible values of both operand types. For shl, shr the 

resulting type is the same as the left operand type, for not the 

operand type. Bitwise operations are performed as follows: With 
each bit (0 is taken as False, 1 as True) a corresponding logical 
operation is performed. For example: 

00010101 and 00011001 = 00010001 

00010101 or 00011001 = 00011101 

00010101 xor 00011001 = 00001100 not 00010101 = 11101010 

(operands and result are in binary form). 

The shl and shr operations have the form: 
a shl n a shr n 

where n is a positive integer, a is an integer. 

a shl n is a positive integer obtained from the binary representation 

of the number a by shifting it to the left by n positions. Positions 

added to the right are filled with zeros. a shr n is a positive integer 

obtained from the binary representation of a by shifting it to the right 

by n positions. 

For example: 
3 shl 2 = 12 12 shr 2 = 3 

since 3=112, after a shift to the left by 2 positions 112 is converted to 

11002=12, and 12=11002 after a shift to the right by 2 positions is 

converted to 112=3.





 

Comparison operations  
The comparison operations < , > , <=, >=, =, <> return the value 

of boolean type and apply to operands of simple type and to strings. 
The = and <> operations also apply to all types. By default, values 

are compared for dimensional types, and references are compared 
for reference types. You can override this behavior by overloading 
the = and <> operations. Similarly, you can overload all comparison 

operations for record types and classes entered by the user.



 

String operations  
All comparison operations < , > , <=, >=, =, <> apply to strings. 

Comparison of strings on inequality is done lexicographically: si < 

s2 if for the first non-matching character with number i si[i]<s2[i] 

or all characters of strings coincide, but si is shorter than s2. 

In addition, the concatenation (merge) + operation is applicable to 

strings and characters, and its result has a string type. 

For example, 'a'+'b'='ab'. 

The operation += is also applicable to strings: 

s += si; // s := s + si; 

A string can be added to a number, with the number being 
preconverted to a string representation: 

s := 'Width: '+i5'; // s = 'Width: i5' 

s := 20.5+'; // s = '20.5' 

s += i; // s = '20.5i' 

The operation * is defined over strings and integers: s*n and n*s 

means the string formed from the string s repeated n times: 
s := '*'*i0; // s = '********** 

s := 5*'ab' // s = 'ababababab 

s := 'd'; s *= 3; // s = 'ddd' 

An in operation is defined over strings to check if a substring is 

embedded in a string: 
'bc' in 'abcde' // True 'c' in 'abd' // False



 

Operations with pointers  

For all pointers the comparison operations = and <> are applicable. 

The dereferencing operation applies to typed pointers: if p is a pointer 
to type t, then pl is an element of type t pointed to by p. Pointers 

of pointer type cannot be dereferenced.



 

Operations with sets  
The operations in (belonging) + (union), - (difference) and * 

(intersection) as well as the operators +=, -= and *= apply to sets 

with basic elements of the same type: 

var s1,s2,s: set of byte; 
begin 

s1 := [1..4]; 
s2 := [2..5]; 
s := s1 + s2; // s = [1...5] 
s := s1 - s2; // s = [1] 
s := s1 * s2; // s = [2...4] 

// s += s1 is equivalent to s := s 

+ s1 // s -= s1 is equivalent to s := s 

- s1 // s *= s1 is equivalent to s := s 

* s1 s += [3..6];  // s = [2..6] 
s -= [3];  // s = [2,4..6] 
s *= [1...5];  // s = 

[2,4...5] Print(3 in s1); // True 
end. 

Comparison operations = (equality), <> (inequality), <= (not strictly 

nested), < (strictly nested), >= (not strictly contains) and > (strictly 
contains) are also applicable to sets with basic elements of the same 
type: 

[1..3] = [1,2,3] 

['a'...'z'] <> ['0'...'9'] 

[2..4] < [1..5] 

[1..5] <= [1..5] 

[1..5] > [2..4] 

[1..5] >= [1..5] 

But it is not true that [1...5] < [1...5]. 

Finally, the operation in determines whether an element belongs to 

the set: 3 in [2..5] will return True, 1 in [2..5] will return False. 

The types HashSet<T> and SortedSet<T> also belong to sets. 
The same operations apply to variables of this type as to built-in sets: 

begin 

var s1 := new HashSet<integer>; 

s1 := HSet(Range(1,4)); 

var s2 := HSet(Range(2,5)); 

var    s:=si+s2;//s=   [1...5] 

var    s:=si-s2;//s=   [1] 

var    s:=si*s2;//s=   [2...4] 



 

Print(3 in si); // True end.



 

Operation @  
The @ operation is applied to a variable and returns its address. 

The result type is a typed pointer to the variable type. For example: 
var r: real; pr: Areal := @r;



 

The operations is and as  

The is operation is designed to check whether a class variable has 
the specified dynamic type. The as operation allows you to safely 

convert a variable of one class type to another class type (as 
opposed to explicitly casting the class type). 

The operation is of the form: 

a is ClassType 

and returns True if a belongs to the ClassType class or one of its 

descendants. 

For example, if Base and Derived are classes, and Derived is a 

descendant of Base, and the variables b and d are Base and Derived 
respectively, then the expressions b is Base and d is Base return 

True, and b is Derived returns False. 

The as operation has the form: 

a as ClassType 

and returns a reference to an object of ClassType type if the 
conversion is possible, otherwise it returns nil. 

For example, in the program 
type Base = class end; 

Derived = class(Base) procedure p; begin end; 

end; 

var b: Base; 

begin 

b := new Base; 

writeeln(b is Derived); 

b := new Derived; 

writeeln(b is Derived); 

end. 

the first time it displays False, the second time it displays True. 

The is AND as operations are used to manipulate a base class 

variable that contains a derived class object. 

1 way. 
if b is Derived then Derived(b).p; 

2 way. 
var d: Derived := b as Derived; 



 

d.p;



 

Operation new  

The new operation has the form: 

newClassName (Constructor Parameters) 

It calls the Class Name constructor and returns the created object. 

For example: 
type My = class constructor Create(i: integer); begin 

end; 

end; 

var m: My := new My(5); 

The equivalent way to create an object is to call the Object Pacal 
style constructor: 

var m: My := My.Create(5); 

It is easier to create a class object when a variable is initialized 
using type auto-definition: 

var m := new My(5); 

A record can also have constructors defined, which are called in 
the same way. But unlike a class, calling a record constructor does 
not allocate memory (it is already allocated) and only fills field 
values.



 

The typeof and sizeof operations  
The sizeof (type name) operation returns for that type its size in 

bytes. 

The typeof(type name) operation returns an object of the 
system.Type class for that type. Here is an example of using 

typeof: 
type Base = class ... end; 

Derived = class(Base) ... end; 

var b: Base := new Derived; 

begin 

writeln(b.GetType = typeof(Derived)); end.



 

Explicit type conversion operation  

The explicit type conversion operation looks like 

NameType (expression) 

and allows you to convert an expression to a type called 
NameType. An expression type and a type named NameType must 
both belong to either an ordinal type or a pointer type, or one type 
must be an heir of the other, or the expression type must support an 
interface with the NameType name. In the case of pointers, it is 
forbidden to convert a typed pointer to a pointer type of another 
type. 

Example. 
type pinteger = Ainteger; 

Season = (Winter,Spring,Summer,Autumn); 

var i: integer; 

b: byte; 

p: pointer := @i; 

5: Season; 
begin 

i := integer('z'); 

b := byte(i); 

1 := pinteger(p); 
s := Season(1); 

end. 

When dimensional types are converted to Object type, packing 
takes place. 

Example. 
var i: integer := 5; 

begin 

var o: Object := Object(i); end.



 

word operation  

The conditional operation (first form) has the following form: 

condition ? expression1 : expression2 

If the condition is satisfied, the result is the value of expression1, 
otherwise the value of expression2. 

For example: 
var min := a < b ? a : b; 

It is easy to see that the conditional operation allows in simple cases 
not to use the conditional operator. For example, the previous code 
for real a and b is equivalent to the following: 

var min: real; 

if a<b then min := a else min := b; 

There is also a second form of conditional operation in Pascal 
syntax: 

if condition then expression1 else expression2 

For example: 
var min := if a < b then a else b; 

It is recommended to use the second form of conditional operation. 

Limitation. The second form of a conditional operation cannot be 
used as a top-level expression in lambda. The following code is 
wrong: 

var l: real -> real := x -> if x<0 then 0 else x; 

To solve this problem, you can put a conditional operation in 
brackets: 

var l: real -> real := x -> (if x<0 then 0 else x); 

Cuts  
A slice is a set of elements of a dynamic array, List<T> or string, 
arranged sequentially or with some step. 

The cut looks like: 
a[from:to] 

or 

a[from:to:step] 

or 



 

a?[from:to] 

or 

a?[from:to:step] 

and contains a copy of the elements of the original container in the 
range [from, to) with the step step. The entry[ from, to) means that 

the element with the index from is included in the range, and the 

element with the index to is not included. The values from, to, step 

must be integers. 

If step is not specified, then it is assumed that step=1, i.e. the 

elements are arranged continuously. 

The slice type is the same as the container type: the array element 
slice is an array, the string slice is a string and the slice for List<T> 
also belongs to the List<T> type. 

For normal slices an exception is generated in the following cases. If 
the from index is out of bounds, an exception is generated during 

program execution. The to index can be out of bounds by 1, i.e. in 

the range [-1..a.Count] for dynamic arrays and lists List<T> and in 
the range [0..s.Length+1] for strings, otherwise an exception also 
arises. 

If step=0, an exception is generated for all slices. 

Slices of type a? are called safe slices and do not generate 

exceptions in all other cases. They work as follows. First, the 
container is considered infinite in both directions, and the slice 
selects certain elements in it. After that, only those elements that 
belong to the original container are left in the slice. 

Here are some examples: 
var a := Arr(0,1,2,3,4,5,6); 

Println(a[2:5]); // [2,3,4] 

Println(a[2:a.Length]); // [2,3,4,5,6] Println(a[2:1000]); 

// Exception! 

Println(a?[2:1000]); // [2,3,4,5,6] 

Println(a[2:7:2]); // [2,4,6] 

Println(a[2:0]); // empty array var s := '0123456'; 

Println(s[2:5]); // 123 

Println(s[0:2]); // Exception! 

Println(s?[0:2]); // 12 

Println(s?[-2::2]); // 135 



 

Println(s[2:s.Length]); // 12345 

The step step can be negative. For example: 
var a := Arr(0,1,2,3,4,5,6); 

Println(a[5:2:-1]); // [5,4,3] 

Println(a[2:5:-1]); // empty array Println(a[a.Length-1:-1:-

2]); // [6,4,2,0] 

In a slice entry, the from or to expression can be skipped, in which 

case all elements from the corresponding side get into the slice. If 
step>0, then missing from is assumed to be equal to the index of the 

first element, missing to is assumed to be equal to the index of the 
last element + 1. If step<0, then the missing from is assumed to be 

equal to the index of the last element, and the missing to is 

assumed to be equal to the index of the first element - 1. 

For example: 
var s := '0123456'; 

Println(s[2:]); // 23456 

Println(s[:4]); // 012 

Println(s[::-1]); // 6543210 

Related to slices is the Slice method defined for dynamic arrays, 
List<T> lists, strings and sequences. However, the meaning of its 
parameters is different: a.Slice(from,step,count).



 

Priority of operations  

Priority determines the order of operations in an expression. The 
operations with the highest priority are executed first. Operations 
with the same priority are performed from left to right. 

Table of operations priorities 

** 
1 
(highest) 

@, not, L, +, - (unary), new 

*, /, div, mod, and, shl, shr, as, is 

+, - (binary), or, xor 

2 

3 

4 
.. 5 

= , <> , < , > , <=, >=, in 

?: 

6 

7 (lowest)  

Brackets are used to change the order of operations in expressions.



 

Operators: overview  

The following operators are defined in PascalABC.NET. 
• Assignment operators 
• Compound operator 
• Variable description operator 
• Operator of the cycle for 
• The foreach loop operator 
• The while and repeat loop operators 
• Conditional if statement 
• Variant case operator 
• Procedure call operator 
• The try except statement 
• The try finally operator 
• Operator raise 
• The break, continue, and exit operators 
• The goto operator 
• Operator lock 
• Operator with 
• Empty operator



 

Assignment operator  

The assignment operator has the form: 

variable := expression 

A variable can be a simple variable, a dereferenced pointer, a 
variable with indexes, or a variable component of the record type. 
The := symbol is called an assignment character. The expression 

must beassignment-compatible with the variable. 

The assignment operator replaces the current value of a variable 
with the value of an expression. 

For example: 
i := i + 1; // increments i by 1 

PascalABC.NET also defines assignment operators with +=, -=, *=, 
/=. For numeric types these operators are described here. In 

addition, use of operators += and *= for strings is described here 
and operators +=, -= and *= for sets are described here. Their 

actions for procedural variables are described here. 

The operators +=, -=, *=, /= have the following meaning: a #= y 

means a := a # y, where # is the sign of the operation +, -, *, /. 

For example: 
a += 3; // increase a by 3 

b *= 2; // increase b by 2 times 

The operator /= is not applicable if the expression on the left is an 

integer. 

The operators +=, -=, *=, /= can also be used with class properties 

of the corresponding types on the left side.



 

Compound operator (block)  

A compound operator is designed to combine several operators into 
one. It has the form: 

begin 

end operators 

In PascalABC.NET a compound operator is also called a block. (In 
Pascal, traditionally a block is a section of definitions followed by a 
compound operator; PascalABC.NET has gone one step further by 
allowing variables to be described directly within the compound 
operator.) 

Operators are separated from each other by "; ". The keywords 

begin and end that border operators are called operator brackets. 

For example: 
s := 0; 

p := 1; 

for var i:=1 to 10 do begin 

p := p * i; s := s + p end 

End can also be preceded by "; ". In this case, the last operator 
before end is assumed to be an empty operator that does not 

perform any action. 

In addition to operators, there may beintra-block variable 
descriptions in a block: 

begin 

var a,b: integer; var r: real; 

readln(a,b); 

x := a/b; writeln(x); 

end. 

Empty operator  
The empty operator does not include any characters, does not 
perform any actions and is used in two cases: 

1. To use the ";" character after the last statement in a block: 
begin 

a := 1; 

b := a; 

end 



 

Since in Pascal the ";" separates operators, in the above code it is 
assumed that there is an empty operator after the last ";". Thus, the 
";" before end in a block can either be placed or not. 

2. For marking the position following the last operator in the block: 
label a; 

begin goto a; 

x := 1; 

a: end



 

word operator  

The conditional operator has a full and a short form. 

The full form of the conditional operator is as follows: 

if condition then onepamopl else operator2 

Some logical expression is specified as a condition. If the condition 
is true, then onepamopl is executed, otherwise operator2 is executed. 

The short form of the conditional operator looks like this: 

if condition then operator 

If the condition is true, the operator is executed, otherwise the 
program passes to the next operator. 

In the case of a design of the form 

If condition1 then 
if condition2 then operator1 
else operator2 

else always refers to the nearest preceding if statement, for which 
the else branch is not yet specified. If the previous example 

requires else to refer to the first if operator, then a compound 

operator must be used: 

If condition1 then 
begin 

if condition2 then operator1 end 

else operator2 

For example: 
if a<b then min := a else min := b; 

Variable description operator  

In PascalABC.NET you can describe variables inside a compound 
begin-end statement in a special variable description statement. 
Such descriptions are called intra-block descriptions. 

The intra-block description has one form: 

var list of names: type ; 

or 



 

var name: type := expression ; 

or 

var name: type = expression; // For compatibility with Delphi 

or 

var name := expression ; 

The names in the list are listed, separated by commas. For example: 
begin 

var a1,a2,a3: integer; 

var n: real := 5; 

var s := ' '; 

- • •• 

end. 

In the latter case, the type of the variable is autodetected by the type 
of the expression in the right part. Auto typing is actively used when 
initializing a variable by calling a constructor or function that returns 
an object: 

begin 

var l := new List<integer>; 

var a := Seq(1,3,5); // type a is output by the type of 

value returned Seq: array of integer end.  



 

Quartet assignment with variable description  

You can combine tuple assignment (unpacking a tuple into 
variables) with variable description: 

var t := (1,2); 

(var a, var b) := (1,2); 

or 

Unpacking a tuple into variables is often used when returning a tuple 
function: 

 
var (S,P) := SP(2,3); 

Initialization by lambda expression  
Auto-type in description is not possible when initializing a variable 
with a lambda-expression: 

// var f := x -> x*x; // you can't do that! var f : 

Func<integer,integer> := x -> x*x; 

Intra-block descriptions are used to avoid cluttering the descriptions 
section with descriptions of auxiliary variables. In addition, intra-block 
descriptions allow you to enter variables exactly when they are first 
needed. Both of these factors greatly increase the readability of the 
program.

var (a,b) (1,2); 

function SP(a,b: real) (a*b,2*(a+b)); 



 

Selection operator  

The select operator performs one action out of several, depending on 
the value of some expression called a switch. It has the following 
form: 

case switch of 

selection list 1: onepamopl; 
... 

selection list N: onepamopN ; 

else a list of end statements; 

The switch is anordinal or string type expression, and the selection 
lists contain constants of an assignment-compatible type. As in the 
if statement, the else branch may be missing. 

The case statement works as follows. If the current switch value is 

found in one of the selection lists, the operator corresponding to that 
list is executed. If the switch value is not found in any list, the list of 
else branch operators is executed, or, if there is no else branch, the 

case operator does not perform any action. 

The selection list consists either of a single constant or, for an 
enumerated type, of a range of values of the form a..y (the constant 

a must be smaller than the constant y); you can also list several 

constants or ranges separated by commas. For example: 
Country of 

'Russia': Capital := 'Moscow'; 

'France': Capital := 'Paris'; 

'Italy': Capital := 'Rome'; 

else Capital := 'No country in the database'; end; 

case DayOfWeek of 

1..5: writeln('Weekday'); 

6,7: writeln('Day off'); 

end; 

The selection lists must not overlap. For example, the following 
fragment 

case i of 

2.5: write(1) ; 

4..6: write(2); 

end; 

will cause a compilation error.



 

Operator of the cycle for  
The for loop operator has one of two forms: 

for variable := start value to end value do operator 

or 

for variable := start value downto end value do 

operator 

Alternatively, a variable can be described directly in the loop header: 

for variable: type := start value to or downto end value do 

operator 

or 

for var variable := start value to or downto end value do 

operator 

In the latter case, auto-definition of the variable type by the type of 
its initial value is used. In the last two cases, the scope of the 
declared variable extends to the end of the loop body, which in this 
case forms an implicit block. Outside the loop body, such a variable 
is not available, so the next loop can use a variable with the same 
name: 

for var i := 1 to 10 do Print(i); 

for var i := 1 to 5 do Print(i*i); 

The text from the word for to the word do, inclusive, is called the 
loop header, and the statement after do is called the loop body. 

The variable after the word for is called the loop parameter. For 

the first form of the loop with the to keyword, the loop parameter 

changes from the initial value to the final value, increasing each time 
by one, and for the second form with the downto keyword, 

decreasing by one. The loop body is executed for each value of the 
variable-parameter. 
A single repetition of the loop body is called a loop iteration. The 
value of the loop parameter is considered undefined after the loop 
ends. 

The loop parameter variable can be of anyordinal type. The start and 
end values must be assignment-compatible with the loop parameter 



 

variable. 

For example: 
var en: (red,green,blue,white); 

-- for en := red to blue do write(Ord(en):2); 

for var c := 'a' to 'z' do write(c); 

If for a loop for ... to the initial value of the loop variable is greater 

than the final value or for the for ... downto the initial value of the 

loop variable is less than the final value, the loop body will not be 
executed at all. 

If the loop is used in a subprogram, the variable parameter of the 
loop must be described as local. 
The best solution in PascalABC.NET is to describe the variable in the 
loop header. 

Changing the variable-parameter of a loop within a loop is a logical 
error. For example, the following fragment with a nested for 

statement is an error: 
for i := 1 to 10 do i -= 1;



 

Loop statement  

The loop statement has the form: 

loop expression do operator 

The expression must be of integer type and indicates the number of 
times the loop body is repeated. If the value of the expression <= 0, 
the loop body is not executed at all. 

A loop is used in simple situations where the loop body does not 

depend on the loop iteration number: 
loop 5 do 

Print(1); 

var x := 1; loop 5 do begin 

Print(x); 

x += 2; 

end;



 

The foreach loop operator  

The foreach loop operator has one of the following forms: 

foreach variable in container do operator 

or 

foreach variable: type in container do operator 

or 

foreach var variable in container do operator 

A container can be a dynamic array, a string, a set, or any 
container that satisfies the lEnumerable or IEnumerable<T> 

interface (for example, List<T> , Dictionary<Key,vaiue>, etc.). 

The loop variable must have the same type as the container 
elements (if the container satisfies the lEnumerable interface, then 

it is the object type). In the last form of foreach, the type of the 

loop variable is autodetected by the type of the container 
elements. 

The loop variable runs through all values of the container elements 
and the loop body is executed for each value of the loop variable. 
Changing the loop variable inside the loop body does not change 
the container elements, i.e., they are read-only. 

For example: 
var 

ss: set of string := ['Ivanov', 'Petrov', 'Sidorov']; 

a: array of integer := (3,4,5); 
b: array [1...5] of integer := (1,3,5,7,9); 
l := new List<real>; 

begin 

foreach s: string in ss do write(s,' '); 

writeln; 

foreach x: integer in a do 

write(x,'  



 

writein; 
foreach var x in b 

write(x, ' ') ; 
writein; 
foreach var r in 1 

write(r,' '); 
end. 

do 

do 



 

The while and repeat loop operators  
The while loop statement has the following form: 

while condition do operator 

A condition is a boolean type expression, and the operator after do is 

called the loop body. Before each iteration of the loop, the condition 
is evaluated, and if it is true, the loop body is executed, otherwise the 
loop is exited. 

If the condition is always true, a loop may occur: 
while 2>1 do write(1); 

The repeat loop operator has the following form: repeat operators 

until condition 

Unlike the while loop, the condition is evaluated after the next loop 

iteration, and if it is true, the loop is exited. Thus, the operators that 
form the loop body of the repeat operator are executed at least once. 

The repeat operator is usually used in situations where the condition 
cannot be checked without executing the loop body. For example: 

read(x); until x=0; 

If the condition is always false, a loop may occur: 
repeat 

write(1); 

until 2=1; 

Operator with  
The with operator allows you to reduce access to the fields of a 

record, as well as to the fields, methods, and properties of an object. 
It has the form: 

with record or object name do operator 

or 

with list of names do operator 

You can omit the name of a record when accessing the field of a 
specified record or the name of an object when accessing the field, 
method, or property of a specified object. For example, let a variable 
be described as 

var DateOfBirthday = record 

Day: Integer; 



 

Month: Integer; 

Year: Integer; 

end; 

Then assigning values to its fields without using the with operator 

looks like this: 
DateOfBirthday.Day := 23; 

DateOfBirthday.Month := 2; DateOfBirthday.Year := 1965; 

Using the with operator allows you to shorten the previous entry: 
with DateOfBirthday do 

begin 

Day := 23; 

Month := 2; 

Year := 1965; 

end; 

If the external variable has the same name as the field (method, 
property), then the field (method, property) is preferred. If there are 
nested with operators, first the attempt is made to consider the 
variable as a field of the record or object of the internal operator with 

itself, then directly the enclosing with operator, and so on. If a with 

statement contains a list of objects, they are considered from right to 
left. For example, if there are descriptions of 

var x,y,z: integer; a: record 

x,y: integer; 

end; 

b: record x: integer; 

end; 

then the program fragment 
with a,b do begin 

x := 1; 

y := 2; z := 3; 

end; 

is equivalent to the fragment 
with a do with b do begin 

x := 1; 

y := 2; z := 3; 
end; 

as well as the fragment 
b.x:=1; 

a.y:=2; z:=3; 

The operator with is obsolete and is now practically not used.



 

The unconditional goto operator  

The unconditional goto operator has the following form: 

goto tag 

It moves the execution of the program to the operator marked with 
the label. 

A label is an identifier or an unsigned integer. To label a statement 
with a label, you must precede the statement with a label followed by 
a colon: 

labeii: operator 

Labels must be described in the labels section using the service 
word label: 

label 1,2,3; 

For example, as a result of executing the program 
label 1,2; 

begin 

var i := 5; 

2: if i<0 then goto 1; 

write(i); 

Dec(i); 

goto 2; 

1: end. 

will be output 543210. 

The label must mark the operator in the same block in which it is 
described. A label cannot label more than one operator. 

The transition to the label can be performed either on the operator in 
the same block or on the operator in the enclosing construction. 
Thus, it is forbidden to jump to a label inside a loop from outside the 
loop. 

The use of goto operator in a program is considered a sign of bad 
programming style. For the main variants of goto use there are 
special procedures introduced in Pascal language: break - transition 

to the operator following the loop, exit - transition behind the last 

operator of the procedure, continue - transition behind the last 

operator in the loop body. 



 

One of the few examples of the goto operator's appropriate use in a 

program is to exit several nested loops simultaneously. For example, 
when searching for element k in a two-dimensional array: 

var a: array [1..10,1..10] of integer; 

var found := False; 

for var i:=1 to 10 do 

for var j:=1 to 10 do if a[i,j]=k then begin 

found := True; 

goto c1; 

end; 

c1: writeln(found);



 

The break, continue, and exit operators  
The break AND continue operators are only used inside loops. 

The break operator is designed to terminate the loop prematurely. It 

immediately exits the current loop and proceeds to the next loop 
iteration. The continue operator terminates the current loop iteration 

by jumping to the end of the loop body. For example: 
flag := False; for var i:=1 to 10 do begin read(x); 

if x<0 then continue; // skip the current loop iteration 

if x=5 then 

begin 

flag := True; break; // exit the loop end; 

end; 

Using break and continue operators outside the loop body is wrong. 

The exit statement is designed to terminate a procedure or function 

prematurely. For example 
function Analyze(x: integer): boolean; 

begin if x<0 then begin 

Result := False; exit end; - -- end; 

Calling exit in the operators section of the main program causes it 

to end immediately. 

More precisely, break, continue and exit in PascalABC.NET are 

special internal procedure calls. 

yield operator  

The yield operator is used in functions that generate sequences and 
has the form: 

yield expression 

A function that contains iterations is called an iterator. At each call 
such a function executes code up to the next iterator, then ends its 
work by returning the value of the expression specified in the iterator, 
and saves its state until the next call. 

For example: 
function Squares(n: integer): sequence of integer; begin 

for var i:=1 to n do yield i*i 

end; 

begin 



 

var q := Squares(5); 

foreach var x in q do 

Print(x); 

Println; 

q.Println; 

end. 

In this example, the variable q stores a sequence, i.e. the algorithm 
for calculating the squares of the first n numbers, which will be run 
either in the foreach loop on sequence q, or by calling the Println 
extension method for sequence q. These sequences are returned 
one by one by calls to the yield operator in the body of the Squares 
function. 

After each call to the operand yield, the function returns the next 
value i*i, finishes its work and saves values of all its variables in the 
internal context. The next time you call this function, its body starts 
executing as if from the point where we were at the end of the 
previous call. 

A yield statement can contain variables external to the function. The 
yield operator is said to capture such variables. For example: 

var a := 2; 

function Squares(n: integer): sequence of integer; 

begin 

for var i:=1 to n do yield i*a 

end; 

begin 

var q := Squares(5); 

q.Println; a := 3; 

q.Println; 

end. 

In this code, the yield operator captures the variable a from external 
context. The capture is done by reference: if you change the a 
variable in the main program and call the iterator function again, the 
changed value of the a variable will be used to generate the 
sequence. As a result, the output of this program will look like: 

2 4 6 8 10 
3 6 9 12 15 



 

There are a number of limitations for functions that have yields in 
their bodies: 

1. Functions containing yield can only return sequences. 
2. Among the parameters of iterator functions there cannot be 

const, var, params-parameters and default parameters. 
3. If a function uses yield, it is forbidden to use the Result variable, 

and vice versa. 
4. Functions with yield cannot contain lock, try...except, try...finally 

operators. 

5. Yield cannot be nested in the with statement. 
6. Yield cannot be used inside lambda expressions. 
7. Functions with yield cannot contain nested subroutines and 

cannot be nested subroutines themselves. 
8. Functions with yield cannot contain local type definitions 
9. The methods of extending cueld cannot be recursive.



 

The yield sequence operator  
The yield sequence operator is used in sequence-generating 
functions along with theyieldoperator, and has the form: 

yield sequence expression 

Unlike theyieldoperator, the yield sequence operator tries elements 
of the sequence specified in the expression and returns those 
elements as values of the main iterator function. For example, the 
following code: 

function f: sequence of real; 

begin 

yield sequence Seq(1,2,3); 

yield 4; 

end; 

begin 

f.Println; 

end. 

will output the sequence 

1 2 3 4 

The following example illustrates the formation of a sequence of 
elements when traversing a binary tree in infix order: 

function InfixPrintTree<T>(root: Node<T>): sequence of T; 

begin 

if root = nil then exit; 

yield sequence InfixPrintTree(root.left); 

yield root.data; 

yield sequence InfixPrintTree(root.right); 

end; 

The same restrictions apply to functions that have yield sequences 
in their bodies as to functions with yield. 

The operator try ... except  
The operator try ... except statement has the form: 

try operators except 
exception handling block end; 

The try block is called a protected block. If an error occurs during 

program execution, it is terminated and execution is passed to the 
except block. If an exception is handled in the except block, then 



 

after it is handled the program continues to run from the statement 
following try ... except ... end. If the exception is left unhandled and 

there is a comprehensive try block, its execution is passed to the 
except block. If the try block does not exist, then the program will 

terminate with an error. Finally, if there is no error in the try block, 

the except block is ignored and the program continues. 

If another exception occurs during exception handling (in the except 

block), the current except block is terminated, the first exception is 

considered unhandled, and handling of the new exception is 
transferred to the comprehensive try block. Thus, there is at most 

one unhandled exception at any given time. 

The exception handling block is either a sequence of statements 
separated by semicolons, or a sequence of exception handlers of 
the form 

on name: type do operator 

Handlers are separated by '; ', the last handler can also be followed 

by '; '. Here type is the exception type (must be derived from the 
standard Exception type), name is the name of the exception 

variable (the name followed by a colon can be omitted). In the first 
case all operators from the exceptions block are executed while 

processing the exception. In the second case the current exception 
type is searched among the handlers (the handlers are enumerated 
sequentially from the first to the last one), and if the handler is found 
the corresponding exception handling statement is executed, 
otherwise the exception is considered unhandled and is passed to 
the enclosing try block. In the latter case all on handlers can be 
followed by else branch which will definitely handle exception if 

none of the handlers is executed. 

Note that the exception variable name can be the same in different 
handlers, i.e. it is local to the handler. 

Searching for exception types in handlers is done with respect to 
inheritance: an exception will be handled if it belongs to the type 
specified in the handler or derived from it. Therefore, it is customary 
to write derived class handlers first, and base class handlers second 
(otherwise the derived class exception handler will never work). The 



 

Exception handler handles all possible exceptions and must 

therefore be written last. 

Example. 
var a: array [1...10] of integer; 

try 

var i: integer; 

readln(i); 

writeln(a[i] div i); 

-- except on System.DivideByZeroException do 

writeln('Divide by 0'); 

on e: System.IndexOutOfRangeException do 

writeln(e.Message); 

on System.FormatException do writeln('Invalid input 

format'); 

else writeln('Some other exception'); end; 

The operator try ... finally  
The operator try ... finally statement has the form: 

try operators 
finally 

operators 
end; 

Operators in the finally block are executed regardless of whether 

or not an exception occurs in the try block. The exception itself is 

not handled. 

The finally block is used to return previously allocated resources. 

Example 1. Closing an open file. 
reset(f); 

try 

finally close(f); 

end; 

The file will be closed whether or not an exception occurs in the try 

block. 

Example 2. Returns the allocated dynamic memory. 
New(p); 

try 

finally 

Dispose(p); 



 

end; 

The dynamic memory controlled by the p pointer will be returned 

regardless of whether or not an exception occurs in the try block.



 

Operator raise  
The raise operator is designed to raise an exception and has the 

form: 

raise object 

Here the object is an object of a class derived from Exception. 
For example: 

raise new Exception('Error');- 

When you raise a specific exception, it is desirable to define your 
type of exception. 

To re-generate an exception inside the except section, a raise call 

without parameters is also used: 
raise;



 

The += and -= operators for procedural variables  
The assignment operator += is for attaching to a procedure variable 

and the assignment operator -= is for detaching. Subprograms are 

called in the order of accession. For example: 
procedure mult2(var r: real); 

begin r := 2 * r; 

end; 

procedure add3(var r: real); 

begin r := r + 3; 

end; 

var 

p: procedure (var x: real); 

r: real; 

begin r := 1; p := mult2; p += add3; 

p(r); // r := 2 * r; r := r + 3; 

p -= mult2; 

p(r); // r := r + 3; 

end. 

Disconnecting non-attached subroutines does not perform any 
action. 

You can also attach/unattach static and instance class methods to a 
procedural variable. For an example, see the topic on 
proceduralvariables. 

The += and -= operators are also used to add/remove handlers for 

.NET events. For example: 
procedure OnTimer1(sender: object; e: 

System.Timers.ElapsedEventArgs); 

begin 

write(1); 

end;  



 

begin 
var Timerl := new 

Timerl.Elapsed += 

Timerl.Start; 
while True do 

System.Timers.Timer(1000 
OnTimerl; 

Sleep(1000); end.



 

Operator lock  

The lock operator looks like this: 

lock object do operator 

The object necessarily belongs to the reference type. 

The lock statement ensures that the statement will only be executed 
by one thread. The object here stores the lock, and the statement 
that represents the body of the lock statement is called the 

synchronization block. When the first thread enters the lock block it 
locks the object, when it leaves the lock block it unlocks it. If the 
object is locked, no other thread can enter the synchronization block 
and suspends until the object is unlocked. 

Operator 
lock obj do oper; 

is completely equivalent to the next section of code: 

Monitor.Enter(obj); try oper; 

finally 

Monitor.Exit(obj); end;



 

Procedures and functions: overview  

What are procedures and functions  
A procedure or function is a sequence of statements that has a 
name, a list of parameters, and can be called from various parts of a 
program. Functions, unlike procedures, as a result of their execution 
return a value that can be used in an expression. For consistency, 
functions and procedures are called subroutines.



 

Description of procedures and functions  
Any procedure or function used in the program must be previously 
described in the descriptions section. 

The description of the procedure is as follows: 

procedure name (a list of formal parameters); 

descriptions section begin 

end operators; 

The description of the function is as follows: 

function name (list of formal parameters): type of the return value ; 

descriptions section begin 

end operators; 

The operators of a subprogram bordered by begin/end operator 

brackets are called the body of that subprogram. 

A list of formal parameters along with surrounding parentheses may 
not exist. It consists of one or more sections, separated by "; ". Each 
section consists of a comma-separated list of variables, followed by 
a colon and a type. Each section may be preceded by the keyword 
var or const, indicating that the parameters are passed by reference 

(see Parameters of Procedures and Functions). The type of a formal 
parameter must be either a name, a dynamic array, a set, or a 
procedural variable (structuralequivalence of types takes place for 
the last three types). 

The procedure or function descriptions section is structured similarly 
to the main program descriptions section. Here, the so called local 
variables and constants, types (except for classes - classes can only 
be described globally), as well as nested procedures and functions 
are described. All such local objects are accessible only within a 
given subprogram and are not visible from the outside. 

In the subprogram descriptions section, you can describe other 
subprograms. The exception is class methods described directly in 
the class body: they cannot describe nested subprograms due to 
syntactic ambiguity. 

For example: 
procedure DoAdd(a,b: real; var res: real); 

begin 



 

res := a + b; 

end;



 

Subprogram call  

A subprogram is described once and can be called many times. The 
procedure call operator is used to call the procedure: 

begin 

var x := Readinteger; var y := Readinteger; var res: 

integer; 

DoAdd(x,y,res); 

Print(res); 

DoAdd(2*x,y,res); Print(res); 

end; 

A function call expression is used to call a function.



 

Result variable  
Inside the body of any function, a special variable named Result is 

defined, which stores the result of the function's calculation. Its type 
is the same as the type of the function's return value. For example: 

function Sum(a,b: real): real; 

begin 

Result := a + b; end; 

function MinElement(a: array of real): real; 

begin Result := real.MaxValue; foreach var x in a do if x < 

Result then 

Result := x; 

end; 

begin var a := Seq(1,5,3); writeln(MinElement(a) + Sum(2,3)); 

end. 

If you do not assign a value to the Result variable within a function, 

the function will return an unpredictable value as a result of its call.



 

Simplified syntax for describing subroutines  

PascalABC.NET has a simplified syntax for describing single-
operator procedures: 

procedure WriteStar := write('*'); 

A similar syntax is available for functions that calculate a single 
expression: 

function Add(a,b: real): real := a + b; 

In some cases, it is possible for the return value of a function to 
have an auto-retrieval of types: 

function Add(a,b: real) := a + b;



 

Procedure and function parameters  

Parameters specified when describing a subprogram are called 
formal parameters. Parameters that are specified when calling a 
subprogram are called actual parameters. 

If a formal parameter is described with the qualifier keyword var or 
const, it is called a variable parameter and is said to be passed by 

reference. If the parameter is described without var or const, it's 

called a value parameter and is said to be passed by value. The 
word reference is also used in PascalABC.NET for reference types. 

If a parameter is passed by value, the values of the actual 
parameters are assigned to the corresponding formal parameters 
when the subprogram is called. The types of actual parameter-values 
must be compatible in assignment with the types of the 
corresponding formal parameters. 

For example, have the following description of the procedure: 
procedure PrintSquare(i: integer); 

begin 

writeln(i*i); end; 

Then when you call PrintSquare(5*a-b) the value 5*a-b will be 

calculated and assigned to the i variable, and then the body of the 

procedure will be executed. 

If a parameter is passed by reference, then when a subprogram is 
called, the actual parameter replaces the corresponding formal 
parameter in the body of the procedure. As a result, any changes to 
a formal parameter-variable within a procedure result in 
corresponding changes to the actual parameter. The actual 
parameter-variables must be variables, and their types must be 
equivalent to the types of the corresponding formal parameters. 

For example, if the procedure described is 
procedure Mult2(var a: integer); 

begin a := a*2; 

end; 

then after calling Muit2(d) the value of d will increase by a factor of 

2. 

As an actual parameter-value, you can specify any expression 



 

whose type is the same as the type of a formal parameter or is 
implicitly reduced to it. Only a variable whose type is exactly the 
same as the formal parameter can be specified as an actual 
parameter-variable. 

When a parameter is passed by reference, the address of the actual 
parameter is passed to the subroutine. Therefore, if a parameter 
occupies a lot of memory (array, record, string), it is usually also 
passed by reference. As a result, it is not the parameter itself that is 
passed to the procedure, but its address, which saves memory and 
running time. If the parameter changes within a subprogram, it is 
passed with the var keyword; if it does not change, it is passed with 

the const keyword: 

For example: 
type 

Person = record name: string; age,height,weight: integer; 

end; 

procedure Print(const p: Person); 

begin 

write(p.name,',p.age,',p.height,',p.weight); end; 

procedure IncAge(var p: Person); 

begin 

Inc(p.age); end; 

Note the peculiarities of passing dynamic arrays as parameters of 
subroutines. 

Since a dynamic array is a reference, when you change a formal 
parameter-dynamic array inside a subroutine, the corresponding 
actual parameter changes. For example, as a result of running a 
program 

procedure p(a: array of integer); 

begin 

a[1] := 2; 

end; 

var b: array of integer := (1,1); 

begin 

p(b); 

writeln(b[1]); end. 

will be output 2. Passing dynamic arrays by reference only makes 
sense if the memory for a dynamic array is redistributed within a 
subroutine: 



 

procedure q(var a: array of integer); 

begin 

SetLength(a,10); 

end;



 

Variable number of parameters  

To indicate that a subprogram should have a variable number of 

parameters, the keyword params is used, followed by a description 

of a dynamic array. For example: function Sum(params a: array of 
integer): integer; begin Result := 0; for i: integer := 0 to 

a.Length do Inc(Result,a[i]); 

end; 

When the subroutine is called, any nonzero number of actual 
parameters of compatible type, listed separated by commas, can be 
in place of the formal parameter params: 

var s: integer := Sum(1,2,3,4,5); s := s + Sum(6,7); 

In the parameter list, the params keyword can only be specified for 

the last parameter, and that parameter must not be the default 
parameter. Parameters params are always passed by value only.



 

Default settings  

You can use the default parameters in the subprogram header. To 
do this, just put an assignment sign and the value after the 
parameter. If you do not specify the default value of the parameter 
when you call it, the value specified in the subroutine description 
will be used. 
The default parameters should be passed by value and come last 
in the parameter list. 

For example: 
procedure PrintTwo(a,b: integer; delim: char := ' '); 

begin 

write(a,delim,b); 

end; 

PrintTwo(3,5); 

PrintTwo(4,2,';'); 

All options for calling a subprogram with default parameters can 
participate in allowing overloading.



 

Advance Announcement  

In some situations it may be necessary to call a subprogram 
described later in the program. For example, this is the case with 
indirect recursion (subprogram A calls subprogram c, which in turn 

calls subprogram A). IN THIS CASE, THE subprogram's leading 

declaration is used, consisting of its header followed by the forward 

keyword. For example: 

procedure B(i: integer); forward; 

procedure A(i: integer); 

begin 

B(i-1); 
end; 

procedure B(i: integer); 

begin 

A(i div 2); end; 

It is forbidden to make a leading announcement for an already 
described subprogram. 

For methods, the forward keyword is not allowed. It is not 

necessary because you can call methods defined in the class body 
later.



 

Subroutine name overloading  
Several procedures or functions with the same name, but different 
numbers or types of parameters can be defined in one namespace. 
The names of such procedures and functions are called overloaded, 
and their creation is called name overloading. A kind of name 
overloading isoverloading of operations. 

When you call an overloaded procedure or function, you choose the 
version that has formal parameter types that match or are closest to 
the actual parameter types. For example, if there are descriptions 

procedure p(b: byte); begin end; 

procedure p(r: real); 

begin end; 

then calling p(i.o) will select the overloaded version with a 

parameter of type real (exact match), and calling p(i) will select the 

overloaded version with a parameter of type byte (this will convert 

the actual parameter of type integer to type byte). 

Note that, unlike Object Pascal, you don't need to use the overload 

service word when overloading. 

If no version in the current namespace fits the call, a compilation 
error occurs. If two or more versions fit the call equally well, there is 
also a compilation error of ambiguous subroutine selection. For 
example, if there are descriptions of 

procedure p(i: integer; r: real); 

begin end; 

procedure p(r: real; i: integer); 

begin end; 

then when you call p(i,2) they both fit the same, which leads to 

ambiguity. 

It is forbidden to overload a subprogram with another subprogram 
with the same number and type of parameters, differing only in 
whether the parameter is passed by value or by reference. For 
example, the descriptions of 

procedure p(i: integer); 

и 
procedure p(var i: integer); 

are considered to be the same. 



 

The return value of a function is not involved in the overloading 
resolution, i.e., overloaded functions cannot differ only in the types of 
return values. 

The name overloading algorithm for multiple connected modules and 
the method name overloading algorithm have peculiarities. The main 
feature of these algorithms is that they work across namespace 
boundaries. 

The search for the overloaded name of a global subprogram in the 
presence of several connected modules is performed in all modules. 
At that, first the current module is searched, and then all modules 
connected in the uses section are searched, in the order from right to 

left. If during this search an object is found that cannot overload the 
previous ones (for example, a procedure is overloaded and a 
variable name is found), the overloading chain ends, and the search 
for the best overloaded subroutine goes on among the ones found up 
to that point. If a module compiled later has a subprogram with 
exactly the same parameters, it hides the version from the module 
compiled earlier. 

For example, let the main program connect two modules, uni and 

un2: 

main.pas 
uses un2,un1; 

procedure p(i: integer); 

begin 

write(i); 

end; 

begin 

p(2.2); 

p(2); 

end. 

un2.pas 
unit un2; 

procedure p(r: real); 

begin 

write(3); 

end; 

end. 

unl.pas 



 

unit uni; 

procedure p(r: real); 

begin 

write(2); 

end; 

end. 

The result will be 21, which means that procedure p from the uni 

module was called first. 

The search for an overloaded method name is performed similarly: 
first the current class is browsed, then its base class, and so on up to 
the object class, or up to the point where an object is encountered 

which cannot overload the previous ones (field or property name). 
From all methods of the same name found in this way, the best one 
is chosen. There may be methods with identical parameters in 
different classes; in this case the first encountered method from the 
given class to the object class is called. 

Subprograms with a variable number of parameters also participate 
in overloading, but normal subprograms have priority over them. For 
example, in the situation 

procedure p(i: integer); 

begin 

write(1); 

end; 

procedure p(params a: array of integer); 

begin 

write(2); 

end; 

begin 
p(1) end. 

the first procedure will be called.



 

Calling subroutines from an unmanaged dll  

To call a subroutine from an unmanaged dll (containing normal, 
not .NET code), use a construction of the form: 

function header external ' dll's NAME' name ' dll's 

FUNCTION NAME'; 

For example: 
function MessageBox(h: integer; m,c: string; t: integer): 

integer; 

external 'User32.dll' name 'MessageBox'; 

- • •• 

MessageBox(0,'Hello!','Message',0);



 

Module structure  
Modules are used to divide the program text into several files. 
Modules describe variables, constants, types, classes, procedures, 
and functions. To be able to use these objects in the calling module 
(which can also be the main program), you should specify the name 
of the module file (without the .pas extension) in the uses section of 
the calling module. The module file (.pas) or compiled module file 
(.pcu) must be located either in the same directory as the main 
program or in the Lib subdirectory of the PascalABC.NET system 
directory. 

The module has the following structure: 

unit module name; 

interface 

interface implementation section 

initialization section 

initialization section 

the finalization section of the end. 

There is also a simplified module syntax without interface and 
implementation sections. 

The first line is mandatory and is called the module header . The 
module name must be the same as the file name. 

The interface section and the module implementation section can 
start with theusessection of external modules and .NET 

namespaces. The names in the two uses sections must not overlap. 

The interface section includes a declaration of all the names that are 
exported by this module to other modules (when you connect it in 
the uses section). These can be constants, variables, procedures, 

functions, classes, interfaces. The implementation of class methods 
can be given directly in the interface section, but this is not 
recommended. 

The implementation section contains the implementation of all 
procedures, functions and methods declared in the interface 
section. In addition, the implementation section may contain 
descriptions of internal names that are not visible outside the 



 

module and are used only as auxiliary. 

The initialization and finalization sections are a sequence of 
operators separated by ;. Operators from the module initialization 

section are executed before the main program starts, operators 
from the module finalization section are executed after the main 
program ends. The order of execution of initialization and 
finalization sections of connected modules is unpredictable. Both 
the initialization and finalization sections may be missing. 

Instead of initialization and finalization sections, there can only be 
an initialization section in the form of 

begin sequence of end statements. 

For example: 
unit Lib; 

interface 

uses GraphABC; 

const Dim = 5; var Colors: array [1...Dim] of integer; 

function RandomColor: integer; procedure FillByRandomColor; 

implementation 

function RandomColor: integer; 

begin 

Result := RGB(Random(255),Random(255),Random(255)); 

end; 

procedure FillByRandomColor; 

begin 

for i: integer := 1 to Dim doColors 

[i] := RandomColor; 

end; 

initialization 

FillByRandomColor; 

end. 

Cyclic links between modules are possible under certain 
constraints.



 

Section uses  

The uses section consists of several consecutive uses sections, 

each of which looks like: 

uses list of names ; 

The names in the list are listed, separated by commas, and can 
either be names of PascalABC.NET plug-ins or .NET namespaces. 
For example: 

uses System, System.Collections.Generic, MyUnit; 

Here MyUnit is a PascalABC.NET module represented as a source 

or compiled .pcu module, System and System.Collections.Generic 

are .NET namespaces. 

In a module or main program that contains a uses section you can 
use all the names from the PascalABC.NET plug-ins and .NET 
namespaces. The main difference between modules and .NET 
namespaces is that a module contains code, while .NET 
namespaces contain only names - to use code you must include it 
using the compiler directive {$referenceBuild Name}, whereBuild 
Name is the name of the dll file containing the .NET code. Another 
equally important difference is that you cannot use names defined in 
another module or main program without connecting that module in 
the uses section. In contrast, if a .NET assembly is connected with 

the $reference directive, you can use its names by explicitly 

specifying them with the namespace without connecting that 
namespace in the uses section. For example: 

begin System.Console.WriteLine('PascalABC.NET'); end. 

By default, the first uses section implicitly includes the PABCSystem 

module, which contains the standard constants, types, procedures 
and functions. Even if the uses section is missing, the PABCSystem 

module is implicitly included. In addition, the System.dll, 
System.Core.dll and mscorlib.dll assemblies containing the basic 
.NET types are included by default using the implicit $ reference 

directive. Global names are searched first in the current module or 
main program, then in all connected modules and namespaces, 
beginning with the rightmost in the uses section and ending with the 



 

leftmost. The namespace of the rightmost module is assumed to be 
nested within the namespace of the leftmost module. Thus, there is 
no name conflict. If you need to use a name from a particular module 
or namespace, you should use the notation 

ImModule name. Name 

or 

NameSpaceNameNET. Name 

The module name can also be the name of the main program if it has 
a program header.



 

t the simplified syntax of the module  

The simplified syntax of modules without interface and 
implementation sections is as follows: 

unit module name; 

descriptions section 
end. 

or 

unit module name; 

descriptions section 
begin 

initialization section end. 

The descriptions section describes constants, variables, procedures, 
functions, classes, interfaces. All names are exported. The simplified 
module syntax is convenient to use for initial training - the module 
differs from the program only in the header and possibly in the 
absence of the statement section.



 

Cyclic links between modules  

Cyclic module references in interface parts are forbidden. For 
example, the following situation is incorrect: 

unit A; interface uses B; 

implementation end. 

unit B; interface uses A; 

implementation end. 

Thus, it is not possible to define two public classes in different 
modules with object fields that refer to each other. 

However, if one reference is in the interface part and a second 
reference is in the implementation part, or both are in the 
implementation parts, then cyclic references are allowed in this 
case: 

unit A; interface implementation uses B; 

end. 

unit B; interface uses A; 

implementation end.



 

Dll Libraries  
Dll libraries (dynamically linked libraries): 

• contain a group of interconnected subprograms 

• are in the compiled file 
• are designed to be accessed from various programs 

They are located in a file with a .dll extension either in the application's current directory (local libraries) 
or in the system directory (global libraries). Global libraries can be used by several applications 
simultaneously. 

In their purpose, libraries are very similar to modules, but have a number of important differences.



 

Differences between libraries and modules 
1. When you create an executable .exe file from modules, the linker program puts into it TOJ types and 

constants that are used (called) in the main program. When compiling, all subroutines, because it is 
not known which subroutines will be needed for a particular prim 

2. The .dii libraries are completely loaded into RAM when the program runs. 
3. .dii libraries are often used simultaneously by multiple programs. 
4. A .dii library can be written and compiled in one language, and can be called from programs written 

in other languages. For example, a PascalABC.NET program can call a function from a library 
written in C# and vice versa. In this way, the libraries support cross-language communication.



 

Library structure 
The library has almost the same structure as the module: 

library name; 
interface 

interface section 
implementation 

implementation section 
end. 

The name of the library must match the name of the pas file in which the library is located. There is also a 

simplified syntax for libraries - without interface and implementation sections, which is the same as the 

simplified syntax for modules (except for the header). 

Compiling the library creates a .dii file containing the compiled library in the current directory.



 

Connecting the library to the main program 
The compiler directive preferenceLibraryName} is used to connect the library to the main program. For 

example: 

preference ABC.dll} 

preference ABC1.dll} 

begin 

writeln(a.GetType); 

end. 

The library can be connected anywhere in the source file. 

Libraries ABC and ABC1 look like this, respectively: 
library ABC; 

var a: integer; 

end. 

и 
library ABC1; 

var a: real; 

end.



 

Algorithm for finding names in libraries 
The name is searched first in the source module, then in the modules connected in the uses section in 
order from right to left, and only then in the connected libraries in order of connection. 

According to this rule in the example from the previous paragraph, the variable a will be of type integer. 

In case of a name conflict, the name used can be preceded by the library name followed by a period: 
preference ABC.dll} 

preference ABC1.dll} 

begin 

writeeln(ABCl.a.GetType); 

end.



 

Sharing modules and libraries  

Sharing modules and libraries has a number of limitations. 

Modules are used to create an executable .exe file or a .dll library (an 
assembly in .NET terms). Libraries can then be connected to other 
libraries or to the main program using the preference} directive. 
Using the same module for two libraries or the same module for a 
library and the main program that connects that library is prone to a 
number of collisions if careless programming. 

Here are examples of such conflicts. 

Example 1. 

Module Unit1.pas 
unitl; 

type Point = auto class x,y: integer; 

end; 

end. 

Library lib1.pas library libl; 

Unitl; 

function Origin: Point := new Point(0,0); 

end. 

Main program 
preference libl.dll} uses Unit1; 

begin 

var p: Point; // type Point from Unit1 

p := Origin; // Origin returns type libl.Point end. 

Compilation error: Cannot convert Unitl.Point type to Point 

The reason: The lib1.dll library and the main program have different 
versions of the Point type, which are not compatible in assignment. 

Example 2. 

Module Unit1.pas 
unit1; 

type Point = auto class x,y: integer; 



 

end; 

procedure pp; begin 

Print(12345); end; end. 

Library lib1.pas library lib1; 

uses Unit1; 

end. 

Main program preference lib1.dll} 

var p: Point; 

begin pp; end. 

Compilation error: Unknown name 'Point', Unknown name 'PP' 

The reason: the library lib1.dll does not "sew" types and procedures 
not used in it. That is, lib1.dll will be empty. 

Example 3. The correct solution to the code from Example 2 

Module Unit1.pas 
unit1; 

type Point = auto class x,y: integer; 

end; 

procedure pp; 

begin 

Print(12345); 

end; 

end. 

Library lib1.pas 
library libl; 

Unitl; 

type Point = Unitl.Point; // type synonym 

procedure pp := Unit1.pp; // call procedure pp again 

end. 

Main program 
preference lib1.dll} 



 

// do not connect module Unit1!!! 

var p: Point; 

begin pp; end. 

Result: Everything compiles 

Example 4. Specifics of using some types of standard PABCSystem 
module. 

lib1.pas library libl; procedure q1(s: set of integer); begin end; 

procedure q2(f: Text); 

begin end; 

procedure q3(f: file of integer); begin end; 

end. 

Main program preference libl.dll} var fl: Text; f2: file of 

integer; 

begin q1([1,2,3]); q2(f1); q3(f2); 

end. 

Compilation errors: 
Cannot convert set of integer type to PABCSystem.TypedSet 
Cannot convert Text type to PABCSystem.Text 
You cannot convert file type of integer to PABCSystem.TypedFile 

Reason: the type of embedded set, Text type, and types of typed 
and untyped files cannot be passed through the boundaries of 
assemblies (in different assemblies these will be different types) 

Documentary comments  

You can mark the titles of procedures, functions, methods, class 
names, types, constants, and variables with so-called document 
comments. Documenting comments pop up in the editor's tooltips 
when you hover the mouse over a word, when you open a 
parenthesis after a subprogram name, and when you select a field 
from the list of fields that drop down when you click a dot after the 
name. The system of tooltips in the editor is called Intellisense. 

The documenting comment is placed on the line preceding the object 
to be marked and starts with ///. For example: 

const /// Constant Pi Pi = 3.14; 



 

type 
/// TTT is a synonym of integer type 

TTT = integer; 

/// Documenting comment of class XXX 

XXX = class 

end; 

/// Documenting comment of procedure p procedure p(a : 

integer); 

begin 

end; 

var 

/// Documenting comment of variable t1 

t1: TTT; 

Documenting comments can take several lines, each of which must 
begin with /// . For commenting subprograms you can use a 
documenting comment ///- in the first line, then its contents change 

the subprogram header in the tooltip when the mouse pointer is 
moved. For example: 

///- Exclude(var s : set of T; el : T) /// Removes element el 

from s procedure Exclude(var s: TypedSet; el: object); 

If the first line of the documenting comment has the form ///--, then 
the tooltip does not pop up. This is done for items that you want to 
hide from the tooltip system.



 

Overview of classes and objects  

Class description  
A class is a composite type consisting of fields (variables), methods 
(procedures and functions) and properties. 
The description of the class has the form: 

type Class NAME = class 

section1 

section2 
-- end; 

Each section has a view: 

access modifier of declaration fields description or methods description 

and properties description 

The access modifier in the first section may be missing, which 
implies the internal modifier (visibility everywhere inside the 

assembly). 

Methods can be described either inside or outside the class. When 
describing a method inside a class, its name is prefaced by the class 
name, followed by a period. For example: 

type Person = class private 
fName: string; 
fAge: integer; 

public 

constructor Create(Name: string; Age: integer); begin 

fName := Name; 

fAge := Age; 

end; 

procedure Print; 

property Name: string read fName; 

property Age: integer read fAge; 

end; 

procedure Person.Print; 

begin 

Writeln($'Name: {Name} Age: {Age}'); 

end; 

The ancestor class name (see Inheritance) may be given after the 
word class in parentheses, as well as a comma separated list of 

supported interfaces. 



 

The word class can be preceded by the keyword sealed, in which 

case it is forbidden to inherit from the class. 

All descriptions and declarations within a class form the body of the 
class. Fields and methods form the interface of the class. 
Field initializers are described here. 

Classes can only be described at the global level. 
Local class definitions (i.e., definitions in the description section of 
subprograms) are forbidden.



 

Variable class type  

In PascalABC.NET, classes are reference types. This means that a 
variable of type class actually stores a reference to an object. 

Variables of class type are called class objects or class 
instances. They are initialized by calling the class constructor, a 
special method that allocates memory for the class object and 
initializes its fields: 

var p: Person := new Person('Ivanov',2 0);- 

After initialization, public class members (fields, methods, 
properties) can be accessed through a class type variable using dot 
notation: 

Print(p.Name,p.Age); 

p.Print;



 

Output a variable of class type  
By default, the write procedure for a variable of class type outputs 

the contents of its public fields and properties in parentheses, 
separated by commas: 

Write(p); // Ivanov 20 

To change this behavior, the virtual Tostring method of the object 

class must be overridden in the class, in which case it will be 
called when the object is output. 

For example: 
type 

Person = class 

- • •• 

function ToString: string; override; 

begin 

Result := $'Name: {Name} Age: {Age}'; 

end; 

end; 

var p: Person := new Person('Ivanov',20); 

Writeln(p); // Name: Ivanov Age: 20



 

Assigning and passing as parameters to subroutines  

A variable of class type is a reference and stores a reference to the 
object created by the constructor call. 

As a reference a variable of type class can store the value nil: 
p := nil; 

• •• 
if p = nil then ... 

When you assign variables of type class, only the reference is 
copied. After assignment, both variables of the class type will 
reference and jointly modify the same object: 

var p1,p2: Person; 

• •• 
pl := new Person('nempoe',20); 

p2 := pl; 

pl.IncAge; 

p2.Print; // Name: Petrov Age: 21



 

Equality comparison  

When comparing variables of class type for equality, references are 
compared, not values. 

var pl := new Person('nempoe',20); 

var p2 := new Person('nempoe',20); 

writeln(p1=p2); // False 

p2 := pl; 

writeln(p1=p2); // True 

This behavior can be changed by overloading the = operation on 
the class.



 

Visibility of class members and access modifiers  

Each field, method, or property of a class has an access modifier 
(attribute) that defines the rules for its visibility. In PascalABC.NET 
there are four kinds of access modifiers: public, private, protected 

and internal. Class members with public attribute can be accessed 

from anywhere in the program, class members with private 
attribute are available only inside methods of the class, class 

members with protected attribute are available inside methods of 

the class and all its subclasses, class members with internal 

attribute are available inside assembly (term .NET, assembly in our 
understanding is a set of files needed to generate an .exe or .dll file). 
In addition, private AND protected members ARE VISIBLE from 

everywhere within the module in which the class is defined. 

The body of a class is divided into sections. Each section begins with 
an access modifier, followed by fields, and then by methods and 
properties with access defined by this modifier. The first section may 
not have an access modifier, in which case the modifier is internal. 

A class can have any number of sections in any order. 

For example, let this code be located in one module: 
type A = class private 

x: integer; protected 

a: integer; public 

constructor Create(xx: integer); begin x := xx; // true, 

because inside a class method you can access its closed 

field x a  := 0;// true 

end; 

end; 

Let the following code be located in another module: 
type 

B = class(A) 

public 

procedure print; 

begin 

writeln(a); // true, because a is a protected field 

writeln(x); // incorrect, because x is a closed field 

end; 

end; 

var b1: B := new B(5); 



 

writeln(b1.x); // incorrect, because x is a closed field 

writeln(b1.a); // incorrect, because a is a protected field 

b1.print; // correct, because print is an open method 

Comments on the program text describe correct and incorrect 
access to fields and methods.



Methods 

 

Methods are procedures and functions declared within a class or 
record. Special types of methods are constructors, destructors and 
overloaded operations. 

Methods can be defined either inside a class (Java, C#, C++ style) 
or outside a class (Delphi, C++ style). When defining a method 
outside the class interface, its name is preceded by the class name, 
followed by a period. For example: 

type Rectangle = class x1,y1,x2,y2: integer; constructor 

Create(xx1,yy1,xx2,yy2: integer); begin 

x1 := xx1; x2 := xx2; 

y1 := YU1; y2 := yy2; 
end; 

function Square: integer; 

end; 

function Rectangle.Square: integer; 

begin 

Result := abs(x2-x1) * abs(y2-y1); 

end; 

Usually, when a class is defined in the interface part of a module, 
only methods are declared in the class interface, and class methods 
are implemented in the module's implementation section. 

Methods are divided into class methods and instance methods. 

Class methods in .NET are called static methods. The declaration of 

a class method starts with the class keyword. Instance methods 

can only be called through a class object variable. Class methods, 

on the other hand, are not associated with a specific instance of the 

class; they should be called as: class name. method name 

(parameters) 

Within a class method there can be no access to the fields of the 
class, but only to other class methods



 

methods. In contrast, an instance method can call a class method. 

For example: 
type Rectangle = class - -- class procedure Move(var r: 

Rectangle; dx,dy: integer); 

begin 

r.xl += dx; r.x2 += dx; 

r.yl += dy; r.y2 += dy; 

end; end; 

var r := new Rectangle(10,10,100,100); 

Rectangle.Move(r,5,5); 

Essentially, class methods are a kind of global subroutines, but they 
are inside a class, which emphasizes that they perform actions 
related to that class. The class in this case acts only as a 
namespace. 

It is not uncommon to create classes that consist entirely of class 
methods. This is, for example, the system.Math class, which 

contains definitions for mathematical subroutines.



 

Field initializers  

When an object is created, its genders are automatically 
initialized with null values if they are not initialized explicitly. They 
can be initialized either in the constructor or directly in the 
description. Initializing a field in description causes the initialization 
code to be inserted at the beginning of ALL constructors. 

For example: 
type A = class private 

x: integer := 1; y: integer; 

l := new List<integer>; 

public constructor Create(xx,yy: integer); begin 

x := xx; y := yy; end; 

constructor Create; 

begin end; end; 

In this example, the code x:=1; l : = new List<integer> is 

inserted at the beginning of each constructor.



 

Constructors  

Objects are created using special methods called constructors. 

A constructor is a function that creates an object in dynamic 
memory, initializes its fields, and returns a reference to the created 
object. This reference is usually immediately assigned to a variable 
of class type. When describing a constructor, the constructor 

keyword is used instead of the function keyword. In addition, the 

type of the return value is not specified for the constructor. 

For example: 
type Person = class private nm: string; ag: integer; 

public constructor Create(name: string; age: integer); 

end; 

-- constructor Person.Create(name: string; age: integer); 

begin nm := name; ag := age; 

end; 

In PascalABC.NET the constructor must always be named Create. 
When describing a constructor within a class, you can omit the 
constructor name: 

type 

Person = class constructor (name: string; age: integer); 

begin nm := name; ag := age; 

end; end; 

Because of PascalABC.NET's implementation of constructor calls, a 
constructor without parameters is always created in 
PascalABC.NET (regardless of whether another constructor is 
defined). This constructor initializes all fields with null values (string 
fields with empty strings, logical fields with False values). 

There are two ways to call the constructor. 

1 method. Object Pascal style. 

To call a constructor, specify the class name followed by a separator 
point, the constructor name, and a list of parameters. For example: 

var p: Person; 

p := Person.Create('Ivanov',2 0);- 

2 method. With new operation - C# style (preferred). 
var p: Person; 

p := new Person('Ivanov',2 0),- 



 

A destructor in Object Pascal is a special procedure that destroys an 

object and frees the dynamic memory it was occupying. When 

describing the destructor the destructor service word destructor is 

used instead of procedure. 

For example: destructor Destroy; begin - -- end; 

Since memory in PascalABC.NET is managed by the garbage 
collector, the destructor in PascalABC.NET plays no role and is just 
a normal procedure-method.



 

Preliminary announcement of classes  

Two or more classes can contain objects of other classes as fields, 
cyclically referring to each other. 

For example: 
type AAA = class b: BBB; 

end; BBB = class a: AAA; 

end; 

This code will cause a compilation error because the type BBB IS 

not yet defined when field b is described. In such a situation you 
should use the preliminary description of the class in the form of 

Class name = class; 

A pre-described class must be fully described in the same type 

section: 
type 

BBB = class; 

AAA = class b: BBB; 

end; 

BBB = class a: AAA; 

end;



 

Variable Self  
Inside each non-static method, a variable self is defined implicitly, 

referring to the object that called the method. 

For example: 
type A = class 

1: integer; 
constructor Create(i: integer); 

begin 

Self.i := i; 

end; 

end; 

At the time the Create constructor is called, the object will already 

have been created. The construct self.i refers to the field i of this 

object, not to the parameter i of the Create function. In fact, any 
non-static method implicitly has Self before any field name and 

method of that class.



 

Properties  

A property looks like a class field, but allows you to perform some 
actions when accessing it for reading or writing. The property is 
described in the class or record as follows: 

property Prop: type read PropertyReader write Propertywriter; 

The PropertyReader can be: 
• is the name of the function to read the property; 
• field of the corresponding type; 
• expression of the corresponding type (in this case the property 

is called extended). 

The Propertywriter can be: 
• is the name of the procedure for recording a property; 
• field of the corresponding type; 
• operator (in this case the property is called extended). A 

predefined variable value is available in the operator, in which 
the value to change the property is placed. 

One of the sections - read or write - can be omitted, in which case we 
have a write-only or read-only property, respectively. 

When accessing a property for reading, PropertyReader is called; 
when accessing it for writing, Propertywriter is called. 

As a rule, each property is associated with some field of the class 
and returns the value of that field using the read function, and 
changes it using the write procedure. The read function and write 
procedure must be methods of this class and have the following 
form: 

function getProp: type; procedure setProp(value: type); 

If a property's read function simply returns the value of a field, you 
can specify the field's name instead of its name. Similarly, if the write 
procedure simply assigns a value to a field, you can replace its name 
with the name of that field. 

Any of the read or write sections can be omitted, in which case we 

get a write-only or read-only property. 

Usually, the read function and write procedure are described in the 
private section of the class. They can be virtual, in which case it is 



 

appropriate to describe them in the protected class section. 

First, let's look at an example that uses a read function and a write 
procedure for a property: 

type Person = class private 

fName: string; 

fAge: integer; 

procedure setAge(value: integer); 

begin if value<0 then value := 0; fAge := value end; 

function getAge: integer; 

begin 

Result := fAge; 

end; 

function getName: string; 

begin 

Result := fName; 

end; 

function getId: string; 

begin 

Result := fName + fAge.ToString; end; 

public 

constructor (name: string; age: integer); 

begin 

fName := name; 

fAge := age; 

end; 

property Age: integer read getAge write setAge; 

property Name: string read getName; 

property Id: string read getId; end; 

begin 

var p: Person; 

p := new Person('Ivanov',2 0);- 

p.Age := -3; // p.Age = 0 ! 

p.Age := p.Age + 1; // the compiler replaces this code with 

p.setAge(p.getAge + 1); 

writeln(p.Id); 

end. 

Whenever we assign a new value to the Age property, the setAge 

procedure is called with the corresponding parameter. Whenever we 
read the value of the Age property, the getAge function is called. 

As already noted, in trivial cases, the procedure name in the write 

property section and the function name in the read property section 
can be replaced with the names of the corresponding fields. Here is 
the code with this remark in mind: 

type 

Person = class 



 

private 

fName: string; 

fAge: integer; 

procedure setAge(value: integer); 

begin if value<0 then value := 0; fAge := value 

end; 

function getId: string; 

begin 

Result := fName + fAge.ToString; 

end; 

public constructor (name: string; age: integer) := 

(fName,fAge) := (name,age); 

property Age: integer read fAge write setAge; property 

Name: string read fName; 

property Id: string read getId; 

end; 

Finally, let's use the advanced properties, replacing getId with the 

expression fName + fAge.ToString, and setAge with the operator that 

implements the body of this procedure: 
type Person = class private 

fName: string; 

fAge: integer; 

public constructor (name: string; age: integer) := 

(fName,fAge) := (name,age); 

property Age: integer read fAge write fAge := value<0 ? 0 

: value; 

property Name: string read fName; 

property Id: string read fName + fAge.ToString; end; 

Note that advanced properties are only available in PascalABC.NET, 
introduced in the language so that you don't have to write a separate 
read function or write procedure, and not in other versions of Pascal. 

Extended properties are convenient to use in many situations. For 
example, when ordinary properties are referenced by similar field 
properties of this class: 

type MyList<T> = class private 

l := new List<T>; 

public 

property Capacity: integer read l.Capacity write 

l.Capacity := value; 

end; 

begin 

var ml := new MyList<integer>; 

ml.Capacity := 5; // write access: value 5 is copied to the 

value variable 



 

Println(ml.Capacity); // read access end. 

Properties cannot be passed by reference to procedures and 
functions. For example, the following code is wrong: 

Inc(p.Age); // error! 

If you want to handle the value of a property by passing it by 
reference, you must use an auxiliary variable: 

a := p.Age; Inc(a); 

p.Age := a; 

However, the properties of the corresponding types can be used in 
the left part of the assignment operations += -= *= /=: 

p.Age += 1; 

Properties are very useful when working with visual objects because 
they allow you to automatically redraw the object if you change any 
of its visual characteristics. For example, if you create a button of 
type Bi Button, then to visually change its width it is sufficient to 

assign a value to its width property: 
bi.Width := 100; 

The procedure to write this property to the fwidth private field will 

look something like this: 
procedure SetWidth(w: integer); 

begin 

if (w>0) and (w<>fWidth) then begin fWidth := w; 

end button redraw code; 

Note the second part of the condition in the if statement: w<>fwidth. 

Adding this check avoids unnecessary redrawing of the button if its 
width does not change.



 

Index properties  

Index properties behave similarly to array fields and are usually 
used to access container elements. As with normal properties, when 
using index properties, some actions can be performed in passing. 

The index property is described in the class as follows: 

property Prop[index description]: type read IndexedPropertyReader 

write IndexedPropertyWriter; 

The IndexedPropertyReader can be: 
• is the name of the function to read the index property; 
• an expression of the corresponding type (in this case the index 

property is called extended). 

The IndexedPropertyWriter can be: 
• is the name of the procedure for writing the index property; 
• operator (in this case the index property is called extended). A 

predefined variable value is available in the operator, into which 
a value is placed to change the property. 

The read function and write procedure must be methods of this class 
and have the following form: 

function GetProp(index description): type; procedure 

SetProp(index description; value: type); 

In the simplest case of a single index, the description of the index 
property looks like this: 

property Prop[ind: index type]: type read GetProp write 
SetProp; 

Whenever we assign a.Prop[ind] := value to an object a 

containing the Prop property, the procedure a.setprop(ind,vaiue) 
is called, and when we read the value of a.Prop[ind], the function 

a.GetProp(ind) is called. 

An index property followed by default keyword followed by ; , is 

called default index property and allows to use class objects as 

arrays, i.e. to use a[ind] instead of a.prop[ind]. The fundamental 

difference between index properties and array fields is that the index 

type can be arbitrary (in particular, string). This makes it easy to 



 

implement so-called associative arrays whose elements are indexed 

by strings. 

In the following example, the index property is used to paint the 
checkerboard cells white or in graphic mode. 

uses GraphWPF; const n = 8; sz = 50; 

type ChessBoard = class private a: array [,] of boolean := 

new boolean[n,n]; procedure setCell(x,y: integer; value: 

boolean); begin if value then 

Brush.Color := Colors.White else Brush.Color := 

Colors.Gray; FillRectangle((x-1)*sz+1,(y-

1)*sz+1,sz,sz); a[x-1,y-1] := value; 

end; 

function getCell(x,y: integer) := a[x-1,y-1]; 

public property Cells[x,y: integer]: boolean read getCell 

write setCell; default; 

end; 

var c: ChessBoard := new ChessBoard; 

begin 

for var x:=1 to n do 

for var y:=1 to n do 

c[x,y] := Odd(x+y); 

end. 

Instead of writing separate getCell and setCell methods for read 

and write access to the property, you can use the advanced index 
properties: 

type 

ChessBoard = class 

private 

a: array [,] of boolean := new boolean[n,n]; 

public 

property Cells[x,y: integer]: boolean 

read a[x-1,y-1] 

write begin if value then Brush.Color := Colors.White 

else Brush.Color := Colors.Gray; FillRectangle((x-

1)*sz+1,(y-1)*sz+1,sz,sz); a[x-1,y-1] := value; 

end; default; 

end;



 

Inheritance  

A class can be inherited from another class. The class that is 
inherited is called a base class (superclass, ancestor), and the 
class that is inherited is called a derived class (subclass, 
descendant). When inheriting, all fields, methods and properties of 
a base class pass to the derived class; besides, new fields, methods 
and properties can be added and old methods can be overridden 
(replaced). Constructors are inherited by special rules that are 
discussed here. 

When describing a class, its base class is specified in parentheses 
after the word class. 

For example: 
type BaseClass = class procedure p; 

procedure q(r: real); end; 

MyClass = class(BaseClass) procedure p; 

procedure r(i: integer); end; 

In this example, the procedure p is overridden and the procedure r 

is added to the MyClass class. 

If you don't specify a base class name, it is assumed that the class 
inherits from the object class, the ancestor of all classes. For 

example, BaseClass is inherited from Object. 

Method redefinition in inheritance is discussed here. 

The word class can be preceded by the keyword sealed, in which 

case it is forbidden to inherit from the class.



 

Overriding methods  

A method of a base class can be overridden (replaced) in 
subclasses. If you want to call a method of a base class, use the 
inherited command word. For example: 
type Person = class private 

name: string; 

age: integer; 

public 

constructor Create(nm: string; ag: integer); 

begin name := nm; age := ag; 

end; 

procedure Print; 

begin 

Writeln('Name: ',name,' Age: ',age); 

end; end; 

Student = class(Person) 

private 

course, group: integer; 

public constructor Create(nm: string; ag,c,gr: integer); 

begin inherited Create(nm,ag); course := c; group := gr; 

end; 

procedure Print; 

begin 

Inherited Print; 

Writeln('Course: ',course,' Group: ',group); end; 

end; 

Here the Print method of the Student derived class first calls the 

Print method inherited from the Person base class using the 
inherited Print construct. Similarly, the Create constructor of the 

Student class calls the Create constructor of the Person base class 

first, also using the inherited constructor word. 

The rules of constructor inheritance are discussed here. 

Note that in this case the constructor of the base class is called as a 
procedure, not as a function, and no new object is created. 

If a base class method with the same parameters is called in a 

method, you can use the inherited notation without specifying the 

method name and parameters. For example, the student.print 

method can be written like this: 
procedure Print; 



 

begin 

inherited; 

writeeln('Kypc: ',course,' Group: ',group); end;



 

Constructor inheritance  

The rules of constructor inheritance are quite complex. Different 
programming languages have different solutions for this. In 
particular, in Delphi Object Pascal, all constructors are inherited. In 
.NET, by contrast, constructors are not inherited. The reason for this 
is that each class must be responsible for initializing its instances. 
The only exception in .NET is that if a class does not define 
constructors at all, a constructor without parameters, called the 
default constructor, is automatically generated. 

PascalABC.NET has an intermediate solution. If a class does not 
define constructors, then all ancestor constructors are automatically 
generated in the descendant by calling the corresponding ancestor 
constructors (we can also say that they are inherited). If the class 
defines constructors, the ancestor constructors are not generated. 
The default constructor, if not explicitly defined, is automatically 
generated anyway and is protected. 

Also, in .NET it is mandatory that the ancestor constructor be called 
first in the descendant constructor; in Object Pascal this is optional. If 
in PascalABC.NET the ancestor constructor is called from the 
descendant constructor, this call must be the first operator. If the 
ancestor constructor is not explicitly called from the descendant 
constructor, the default ancestor constructor (i.e., without 
parameters) is called implicitly as the first operator in the descendant 
constructor. If the ancestor does not have such a constructor (it can 
be a class compiled by another .NET compiler or it can be a member 
of the standard class library - all classes compiled by 
PascalABC.NET have a default constructor), a compilation error 
occurs. 

For example: 
type A = class 

i: integer; 

// the default constructor is not explicitly defined, so it 

is generated automatically 

constructor Create(i: integer); 

begin Self.i := i; 

end; 

end; 

B = class(A) 



 

j: integer; 
constructor Create; 

begin 

// the default constructor of the base class is called 

automatically 

// the default constructor is explicitly defined, so it 

is not automatically generated 

j := 1; 

end; 

constructor Create(i,j: integer); 

begin 

inherited Create(i); Self.j := j; 

end; 

end; 

C = class(B) 

// the class does not define constructors, so 

// default constructor and constructor Create(i,j: integer) 

// are generated automatically by calling the corresponding 

ancestor constructors in their bodies 

end;



 

Virtual methods and polymorphism  

Polymorphism (from the Greek "many forms") is a property of 
classes related by inheritance to have different implementations of 
methods included in them, and the ability of a base class variable to 
call methods of the class whose object is contained in that variable at 
the time the method is called. 

Polymorphism is used in a situation where a group of interrelated 
objects needs to perform a single action, but each of these objects 
needs to perform the specified action in its own way (i.e. the action 
has many forms). To do this, a base class is defined for all objects 
with virtual methods provided for changing behavior, and then these 
methods are overridden in descendants. 

To explain, let's look at method overrides in a subclass: 
type Base = class public procedure Print; begin 

writeeln('Base'); 

end; end; Derived = class(Base) public 

procedure Print; 

begin 

writeln('Derived'); end; end; 

Let's assign an object of the derived Derived class to the Base class 

variable and call the Print method. 
var b: Base := new Derived; b.Print; 

Which version of the Print method is called - the Base class or the 
Derived class? In this case, the decision will be made at the 

compilation stage: the Print method of the Base class declared in 

the description of the y variable will be called. They say that there is 
an early association of the method name with its body. If, however, 
the decision about which method to call is made at runtime, 
depending on the actual type of object to which the Y variable refers, 
then the Derived.Print method is called (also said to be late). 

Methods with late binding are called virtual methods, and the base 
class variable through which a virtual method is invoked is called a 
polymorphic variable. Thus, polymorphism is implemented by 
calling virtual functions through a base class variable. The class type 
that is stored in this variable at runtime is called a dynamic type of 
this variable. 



 

In order to make a method virtual, in the declaration of that method 

you should specify the keyword virtual after the header followed by 

;. To override a virtual method you should use the override 

keyword: 
type Base = class public procedure Print; virtual; begin 

writeeln('Base'); end; 

end; 

Derived = class(Base) public 

procedure Print; override; begin 

writeln('Derived'); end; 

end; 

Now in a similar section of code. 
var b: Base := new Derived; b.Print; 

Print method of Derived class is called because the decision to call 

the method is postponed to the stage of program execution. Print 

methods are said to be tied in a chain of virtuality. The keyword 

reintroduce is used to break it (not to call methods in subclasses 

virtually): 
type 
DerivedTwicel = class(Derived) 

public 

procedure Print; reintroduce; 

begin 

writeeln('DerivedTwicel'); 

end; 

end; 

If we want to start a new chain of virtuality, we should use both 
virtual and reintroduce: 

type 

DerivedTwice2 = class(Derived) public procedure Print; 

virtual; reintroduce; begin 

writeeln('DerivedTwice2'); 

end; end; 

If you redefine a virtual function as non-virtual without the 
reintroduce keyword, there will be no error, just a warning that the 
virtuality chain is broken. So the reintroduce keyword in this 

situation only suppresses the warning output. 

When overriding a virtual method in a subclass, its access level must 
not be lower than in the base class. For example, a public virtual 



 

method cannot be overridden in a private-method subclass. 

Abstract methods and classes  
Methods intended to be overridden in subclasses are declared with 
the abstract keyword and are called abstract. These methods are 

virtual, but the virtual keyword need not be used. For example: 
type Shape = class private x,y: integer; 

public constructor Create(xx,yy: integer); begin 

x := xx; y := yy; end; 

procedure Draw; abstract; end; 

Classes containing abstract methods are also called abstract 
classes. Instances of these classes cannot be created. 

Classes with abstract methods are used as "semi-finished products" 
to create other classes. For example: 

type 

Point = class(Shape) 

public procedure Draw; override; begin 

PitPixel(x,y,Color.Black); 

end; end; 

Using override when overriding abstract methods is mandatory 

because abstract methods are a kind of virtual methods. 

You can explicitly declare a class as abstract by using the abstract 
keyword. Usually abstract classes contain abstract methods, but not 
necessarily: 

type A = abstract class(Shape) end;





 

Overload operations  

Operation overloading is a language tool that allows you to enter 
operations on user-defined types. In PascalABC.NET you can use 
only predefined operation icons. Operation overloading for type t, 

which is a class or a record, is done by a static (class) method 
function with a special name operatorSignOperations. Overloading of 
special operations +=, -=, *=, /= is performed with the help of static 

procedure-method, the first parameter of which is passed by 
reference. 

For example: 
type Complex = record re,im: real; static function 

operator+(a,b: Complex): Complex; begin Result.re := a.re + 

b.re; 

Result.im := a.im + b.im; end; static function 

operator=(a,b: Complex): boolean; begin 

Result := (a.re = b.re) and (a.im = b.im); end; 

end; 

The following rules apply to overloading operations: 
1. You can overload all operations except @ (address taking), as, is, 

new. You can also overload special binary operations +=, -=, *=, 
/= that do not return values. 

2. You can only overload operations that have not yet been 
overloaded. 

3. The type of at least one operand must match the type of the 
class or record within which the operation is defined. 

4. Overloading is performed using a static function-method, the 
number of parameters of which coincides with the number of 
parameters of the corresponding operation (2 - for binary, 1 - for 
unary). 

5. Overloading operations +=, -=, *=, /= for the corresponding 

operators is done by a static procedure-method whose first 
parameter is passed by reference and has the type of record or 
class in which the given operation is defined, the second is 
passed by value and is compatible with the first by assignment. 
The rest of the operations are overloaded using static function-
methods. 

6. Type conversion operations are defined by static functions that 



 

use operator implicit (for implicit type conversion) or operator 

explicit (for explicit type conversion) instead of a name. 

For example: 
type 

Complex = record - -- static function operator implicit(d: 

real): Complex; begin 

Result.re := d; 

Result.im := 0; 

end; 

static function operator explicit(c: Complex): string; 

begin 

Result := Format('({0},{1})',c.re,c.im); 

end; 

static procedure operator+=(var c: Complex; value: 

Complex); 

begin 

c.re += value.re; 

c.im += value.im; 

end; 

static function operator+(c,c1: Complex): Complex; 

begin 

Result.re := c.re + c1.re; 

Result.im := c.im + c1.im; 

end; 

end; 

You can overload operations using extension methods - in this case 
you should not write the word class when describing a subroutine. 
For example, this is how the system module implements adding a 
number to a string: 

function operator+(str: string; n: integer): string; 

extensionmethod; 

begin 

result := str + n.ToString; 

end; 

You can overload advanced assignment operations +=, -=, etc: 

type t0 = class 

x: integer; 

static function operator+=(a: t0; i: integer): t0; begin 

a.x += i; 

end; 

end; 

begin var t := new t0; t += 2; 

end. 



 

It is important to note that if there is a property to the left of the 
extended assignment, the overloaded form of the extended 
assignment is ignored and the extended assignment itself is 
expanded into an assignment and the corresponding operation: 

type t0 = class 

x: integer; 

static function operator+=(a: t0; i: integer): t0; 

begin a.x += i; 

end; 

end; tl = class property pl: t0 read ... write ...; 

end; 

begin var t := new t1; t.p1 += 2; 

end. 

In this code, the last extended assignment operator will be forcibly 
expanded to 

t.pl := t.pl + 2; 

and since the + operation is not overloaded for t0, the compiler will 
generate an error.



 

Static classes, fields, methods, properties and 
constructors  

You can declare so-called static fields, properties and methods in a 
class. They do not belong to a specific instance of the class, but are 
associated with the class. To call them, use dot notation, and use the 
class name before the dot instead of the object name. To make a 
field or property or method static, the keyword static must precede 

its name. When describing static properties, only static fields or 
methods can be specified in read and write sections. 

For example, let's define for class Person the number of created 
objects of this class as a static field and organize access to this field 
for reading using static function. After each constructor call the value 
of static field will increase by 1: 
type Person = class 

private 

name: string; 

age: integer; 

static cnt: integer := 0; 

public 

static property Coun: integer read cnt; constructor (n: 

string; a: integer); 

begin 

cnt += 1; 

name := n; 

age := a; 

end; 

static function Count: integer; 

begin 

Result := cnt; 

end; 

end; 

begin 

var p: Person := new Person('Ivanov',20); 

var p1: Person := new Person('Petrov',18); 

Writeln(Person.Count); // call the class method Count end. 

Unlike static fields and methods, regular fields and methods are 
called instance fields. You can access both instance and static fields 
from conventional methods, but only static fields can be accessed 
from static methods. 

Similarly, you can also define a static constructor to automatically 
initialize class fields. The static constructor is described with the 



 

static keyword and is guaranteed to be called before calling any 

static method and creating the first object of that class. 

For example, let's define in Person class a static field - an array of 
objects of Person type - and initialize it in static constructor. Then you 

can use that array to implement RandomPerson function, which returns 

random object of Person type: 
type 
Person = class 

private 

static arr: array of Person; 

name: string; 

age: integer; 

public 

static constructor; 

begin 

SetLength(arr,3); 

arr[0] := new Person('Ivanov',2 0),- 

arr[1] := new Person('nempoea',19); 

arr[2] := new Person('nonoe',35); 

end; 

//... 

static function RandomPerson: Person; 

begin 

Result := arr[Random(3)]; 

end; 

end; 

const cnt = 10; 

begin 

var a := new Person[cnt]; 

for var i:=0 to a.Length-1 do 

a[i] := Person.RandomPerson; 

end. 

The class can also be described as static: 
type 

MyStatic = static class 

static Pi: real := 3.14; 

static function Pi2 := Pi * Pi; end; 

In this case all its methods, fields, properties and constructors must 

be static. It is forbidden to create instances of static classes. In 

addition, you cannot inherit from static classes, a static class cannot 

be an ancestor, and you cannot instantiate a generalized class with a 

static class. For Delphi compatibility, static class members can also 

be declared with the keyword class, which in this context is 

synonymous to static: 



 

type 

MyStatic = static class 

class Pi: real := 3.14; 

class function Pi2 := Pi * Pi; end;



 

Expansion methods  

Any existing type stored in the external dll and all types in the 
standard .NET library can be extended with new methods. An 
extension method is defined as a procedure or function with the 
extensionmethod modifier. The first parameter of an extension 

method must necessarily be named Self and belong to an extensible 
type. Let us compare the two procedures described below: 

procedure MyPrint(Self: integer); 

begin 

writeeln(Self) end; 

procedure MyPrintEx(Self: integer); extensionmethod; begin 

writeeln(Self) end; 

begin 

MyPrint(l); 

l.MyPrintEx; end. 

Here MyPrint is a normal procedure with an integer type parameter, 
MyPrintEx is an extension method of integer type. When called, the 
first parameter MyPrintEx becomes the object that calls MyPrintEx 
as a method. 

You can extend the type of a sequence, then all classes that are 
sequences (dynamic one-dimensional arrays, lists List<T>, sets 
HashSet<T> and SortedSet<T>) will get this method. For example, 
the PABCSystem module introduces the ForEach extension method 
for sequences in this way: 

procedure &ForEach<T>(Self: sequence of T; action: T -> (); 

extensionmethod; 

begin foreach x: T in Self do action(x); 

end; 

You can use extension methods to overloadoperations: 
procedure operator+=<T>(a: List<T>; x: T): List<T>; 

extensionmethod; 

begin 

a.Add(x); 

end; 

In this case the first parameter does not have to be named Self. 

There are a number of limitations for extension methods: 
• Extension methods cannot be virtual. 



 

• If an extension method has the same name as a normal 
method, the normal method is preferred.



 

Attributes  

The language has a limited number of standard keyword attributes - 
for example: public, private and protected access level attributes, 
static, virtual and override attributes for methods. 

Custom attributes (hereafter simply attributes) are special language 
constructs that allow you to label classes, methods, subroutines, 
and parameters with some name (possibly with parameters). 

For example, for serialization mechanism the class is marked with 
[Serializable] attribute, and the fields that should not be serialized 
are marked with [NonSerialized] attribute. For Unit-testing, the test 
method is marked with the [Test] attribute or the [TestCase] 
attribute. The attributes are recognized by reflection method 
(reflexion). 

An attribute is a regular class inherited from System.Atribute. For 
example: 

type AuthorAttribute = class(System.Attribute) auto 

property Name: string; 

constructor (n: string); 

begin name := n; end; 

end; 

Note that the attribute class usually ends in Attribute. 

When marking an entity with an attribute, the attribute name is 
enclosed in square brackets. The attribute constructor also provides 
the ability to use attributes with parameters. For example, you can 
mark a class with an AuthorAttribute attribute. 

[Author('Alex')] type My = class 

// ... 

end; 

Note that the Attribute ending can be omitted. 

You can tell if a class is marked with an attribute by using reflection: 
begin 

var t := typeof(My); 

var attrs := t.GetCustomAttributes(false); 

foreach var attr in attrs do if attr is AuthorAttribute 

(var auth) then 

Print(auth.Name); 



 

end. 

Trace



 

Anonymous classes  

Sometimes it is necessary to generate a class object on the fly 
without describing the class. Such a class has no name (it is 
anonymous), but a set of fields is known. 

An object of an anonymous class is created as follows: 
var p := new class(Name := 'Ivanov', Age := 20); 

Println(p.Name,p.Age); 

The p object automatically generates public Name and Age fields of 
the appropriate types. 

Two objects belong to the same anonymous class if they have the 
same set of fields and those fields belong to the same types. For 
example: 

var p1 := new class(Name := 'Petrov', Age := 21); p1 := p; 

If fields of an unnamed class are initialized by variables, you don't 
have to write field names - they are generated automatically and 
their names and types coincide with the variable names and types. 
For example: 

var Name := 'Popova'; 

var Age := 23; 

var p := new class(Name, Age); 

Println(p.Name,p.Age); 

The fields of an unnamed class can also be initialized by a variable 
with a compound name that has dot notation. In this case, the last 
names in the dot notation are taken as field names. For example: 

var d := new DateTime(2015,5,15); 

var p := new class(d.Day, d.Month, d.Year); 

Println(p.Day, p.Month, p.Year); 

Println(p);



 

Autoclasses  
When describing a class, you can put the word auto before the word 

class. Such classes are called autoclasses. For autoclasses, a 

constructor is automatically generated with parameters that initialize 
all class fields, as well as a Tostring method that outputs values of 

all class fields. For example: 
type Person = auto class name: string; age: integer; 

end; 

var p := new Person('Ivanov',2 0),- // the autoclass 

constructor is automatically generated 

Writeln(p); // the automatically generated ToString method 

is called 

Here, unlike in the writeln action, by default the values of all the 
fields, not just the public ones, are output.



 

Exception handling: overview  
When an error occurs during the execution of a program, a so-called 
exception is generated which can be caught and handled. An 
exception is an object of a class derived from the Exception class 

that is generated when an exceptional situation occurs. 

There are a number of standard exception types available. You can 
also define custom exception types. 

If an exception is not handled, the program will end with an error. To 
handle exceptions the operatortry ... except. 

Exceptions are usually raised in subroutines because the subroutine 
developer usually does not know how to handle an erroneous 
situation. At the point where the subroutine is called, it is usually 
already known how the exception should be handled. For example, 
let the following function be developed: 

function mymod(a,b: integer): integer; 

begin 

Result := a - (a div b) * b; end; 

If you call mymod(1,0), the System.DivideByZeroException of integer 

division by 0 will be thrown. 

Consider a naive attempt to handle an error situation within the 
mymod function: 

function mymod(a,b: integer): integer; 

begin if b = 0 then 

writeeln('mymod function: divide by 0'); 

Result := a - (a div b) * b; end; 

Such a solution is bad, because the programmer developing the 
mymod function does not know how it will be used. For example, 

when calling the mymod function in a loop, we will see a repeated 

error message on the screen. 

The easiest way is to leave the original version of the function and 
handle a System.DivideByZeroException: 

try 

readln(a,b); 

writeln(mymod(a,b) mod (a-1)); 

• -- except on System.DivideByZeroException do 
writeln('Divide by 0'); 

end; 

The difference from the output inside a function is that when we 



 

design a program, we ourselves define the action to be performed 
when an exception is handled. This can be a specific error 
message, output to an error file, or an empty statement (in case we 
want to silently extinguish an exception). 

However, this solution has a significant drawback: 
System.DivideByZeroException will be thrown even if a=1 and will 
not be associated with mymod function. To eliminate this drawback, 

let's define our own exception class and raise it in the mymod 

function: 
type MyModErrorException = class(System.Exception) end; 

function mymod(a,b: integer): integer; 

begin if b = 0 then raise new MyModErrorException('Function 

mymod: division by 0'); 

Result := a - (a div b) * b; end; 

Then the error handling will look like this: 
try 

readln(a,b); 

writeln(mymod(a,b) mod (a-1)); 

• -- except on System.DivideByZeroException do 
writeln('Divide by 0'); 

on e: MyModErrorException do writeln(e.Message); 

else writeln('some other exception') end; 

IF TO MAKE MYMODErrorException A UNDERSTANDING 
CLASS System.ArithmeticException, As And 
System.DivideByZeroException, then the LAST CODE can be 

simplified: 
type MyModErrorException = class(System.ArithmeticException) 

end; - -- 

try 

readln(a,b); 

writeln(mymod(a,b) mod (a-1)); 

-- except on e: System.ArithmeticException do 

writeeln(e.Message); 

else writeln('Some other exception') end; 

Finally, WE CAN DO the following. We intercept in 
FUNCTIONS mymod exception System.DivideByZeroException and In 
response generate a new one - MyModErrorException: 

function mymod(a,b: integer): integer; 

begin 

try 

Result := a - (a div b) * b; 

except 

on e: System.DivideByZeroException do 



 

raise new MyModErrorException('Function mymod: 

division by 0'); 

end; 

end;



 

Standard exception classes  

All exception classes are descendants of the system.Exception 

class which includes the following interface: 
type Exception = class 

public constructor Create; constructor Create(message: 

string); property Message: string; // read only property 

StackTrace: string; // read only 

end; 

The Message property returns a message associated with the 

exception object. 

The StackTrace property returns the subroutine call stack at the 

time of exception generation. 

Below are some exception classes defined in the System 

namespace and derived from the System.SystemException class: 

System.OutOfMemoryException - not enough memory to execute 

the program; 
System.StackOverflowException - stack overflow (usually with 

multiple nested subroutine calls); 
System.AccessViolationException - an attempt to access 

protected memory; 

System.ArgumentException - invalid value of a subprogram 

parameter; 
System.ArithmeticException is a base class of all 
arithmetic exceptions. Heirs: 

System.DivideByZeroException - integer division by 0; 

System.OverflowException - Overflow when performing an 

arithmetic operation or type conversion; 

System.FormatException - Incorrect parameter format (for 

example, when converting string to number); 

System.IndexOutOfRangeException - EXCEPTION of the range of 

the array index change; 
system.invaiidcastException - incorrect type conversion; 
System.NullReferenceException - an attempt to call a method for 

a null object or to dereference a null pointer; 
System.IO.IOException - IO error. Heirs: 



 

System.IO.IOException.DirectoryNotFoundException - 

directory not found; 

System.IO.IOException.EndOfStreamException - an attempt to 

read beyond the end of the stream; 

System.IO.IOException.FileNotFoundException - file not 

found.



 

User-defined exceptions  

To define your own type of exception, it is sufficient to spawn a 
class that is a descendant of the Exception class: 

type MyException = class(Exception) end; 

The body of an exception class can be empty, but nevertheless, a 
new name for the exception type will distinguish it from the rest of 
the exceptions: 

try ... 

except 

on MyException do 

writeeln('Integer division by 0'); 

on Exception do writeln('File is missing'); 

end; 

The exception may contain additional information related to the 
point at which the exception occurred: 

type 

FileNotFoundException = class(Exception) fname: string; 

constructor Create(msg,fn: string); 

begin inherited Create(msg); fname := fn; 

end; 

end; 

• •• 

procedure ReadFile(fname: string); 

begin 

if not FileExists(fname) then 

raise new FileNotFoundException('File not 

found',fname); 

end; 

• •• 

try 

-- except on e: FileNotFoundException do writeln('File 

'+e.fname+' not found'); end; 

Re-generating an exception  
To re-generate an exception in the except block, use 

theraiseoperator without parameters: 
raise; 

For example: 
try ... 

except 



 

on FileNotFoundException do 

begin 

log.WriteLine('File not found'); // Write to the error 

file 

raise; 

end; 

end;



 

Examples of exception handling  

Example 1. Handling incorrect data entry. 

Consider the program. 
var i: integer; 

begin 

readln(i); 

writeln(i); 

writeeln('Program execution continues'); 

end. 

If an error occurs while entering data (for example, we enter a 
wrong number), the program will terminate with an error (input error) 
and the following writeln statements will not be executed. 

Let's catch an exception in the try block: 
var i: integer; 

begin try readln(i); writeln(i); except 

writeeln('Input error'); 

end; 

writeeln('Program execution continues'); end. 

This time, if an input error occurs, the program will not be 

terminated, but will be passed to the except block, after which the 

program will continue. Thus, in the last program only the writeln(i) 

operator will not be executed. 

If various exceptions can occur in the try block, a second form of 

the except block with several exception handlers is usually used. 

Example 2. Handling various exceptions. 
var a,b: integer; 

assign(f,'a.txt'); 

try 

readln(a,b); 

reset(f); 

c:=a div b; 

except 

on System.DivideByZeroException do writeln('Integer 

division by 0'); 

on System.IO.IOException do writeln('No file'); 

end; 

It is often necessary to combine exception handling and resource 
release, regardless of whether an exception occurs or not. In this 
case the nested operators try ... except and try ... finally. 



 

Example 3. Nested operators try ... except and try ... finally. 

assign(f,'a.txt'); 

try 

reset(f); 

try c:=a div b; except on System.DivideByZeroException do 

writeln(,Integer division by 0'); end; 

finally close(f); 

end; except 

on System.IO.IOException do writeln('No file'); end; 

Note that in this example the exception related to integer division by 
0 is handled in the inner try block itself, and the exception related 

to a missing file is handled in the outer try block itself. At the same 
time, if a file was open, it will be closed regardless of the division by 
0 exception.



 

Interfaces: overview  

An interface is a data type containing a set of method and property 
headers intended to be implemented by some class. Interfaces are 
described in the type section as follows: 

Interface name = interface declaration of methods and 

properties 
end; 

For the method, only the header is given, for the property the 
necessary read and write access modifiers are given after the return 
type. 

For example: 
type 

IShape = interface procedure Draw; property X: integer read; 

property Y: integer read; end; 

ICloneable = interface function Clone: Object; end; 

Fields and static methods cannot be part of an interface. 

A class implements an interface if it implements all interface methods 
and properties in the public section. If the class does not 

implement at least one method or property of the interface, a 
compilation error occurs. A class can also implement multiple 
interfaces. The list of implemented interfaces is specified in brackets 
after the class keyword (if an ancestor name is specified, then after 

the ancestor name). 

For example: 
type 

Point = class(IShape,ICloneable) private xx,yy: integer; 

public constructor Create(x,y: integer); begin  



 

 
end; procedure Draw; begin; property X: integer read xx; 

property Y: integer read yy; function Clone: Object; 

begin 

Result := new Point(xx,yy); end; 

procedure Print; 

begin write(xx,' ',yy); 

end; end; 

Interfaces can be inherited from each other: 
type 

IPosition = interface property X: integer read; property Y: 

integer read; end; 

IDrawable = interface procedure Draw; end; 

IShape = interface(IPosition,IDrawable) end; 

An interface is essentially an abstract class without any 
implementation of its methods. For interfaces, in particular, all the 
rules of object type casting apply: the type of an object implementing 
an interface can be implicitly cast to an interface type, but the reverse 
conversion is only done explicitly and can cause an exception if the 
conversion is not possible: 

var ip: IShape := new Point(20,30); 

ip.Draw; 

Point(ip).Print; 

All methods of the class that implements the interface are virtual 
without using the virtual or override keywords. In particular, 

ip.Draw will call the Draw method of the Point class. However, the 

virtuality chain of such methods is broken. To continue the chain of 
virtual methods implementing the interface in subclasses, you should 
use the keyword virtual: type 

Point = class(IShape,ICloneable) 

function Clone: Object; virtual; begin 

Result := new Point(xx,yy); 

end; 

end; 

For interfaces, like for classes, you can also use the is and as 

operations: 
if ip is Point then 

var p: Point := ip as Point; 

if p<>nil then 

writeeln('npeo6pa3oeaHue successful');

xx x; yy := y; 



 

Implementing multiple interfaces  

Several interfaces may contain the same methods or properties. 
When inheriting from such interfaces, such identical methods or 
properties are merged into one: 

type IShape = interface procedure Draw; property X: integer 

read; property Y: integer read; end; IBrush = interface 

procedure Draw; 

property Size: integer read; 

end; 

Brush = class(IShape,IBrush) procedure Draw; 

begin end; end; 

To solve the problem with identical names in interfaces, in .NET 
classes can implement interface methods in a so-called explicit 
way, so that an interface method call for a class variable is only 
possible after an explicit conversion to an interface type. For 
example: 

type 

IWindow = interface procedure Menu; end; 

IRestaurant = interface procedure Menu; 

end; 

RestaurantSystem = class(IWindow,IRestaurant) public 

procedure IWindow.Menu; // explicit implementation of the 

interface method 

begin 

Println('IWindow.Menu'); 

end; 

procedure IRestaurant.Menu; 

begin 

Println('IRestaurant.Menu'); 

end; 

end; 

begin 

var r := new RestaurantSystem; 

IWindow(r).Menu; 

IRestaurant(r).Menu; 

r.Menu; // compilation error! 

end.



 

Generalized types: overview  

A generic type is a template for creating a class, record or interface, 
parameterized by one or more types. A class (record, interface) is 
formed from a class (record, interface) template by substituting 
specific types as parameters. Parameters are specified after the 
name of the generalized type in angle brackets. For example, 
stack<T> is a template class of a list of elements of type t, 
parameterized by type t, and stack<integer> is a list class with 

elements of type integer. 

Generalized subprogramsare described here. 

The following syntax is used to declare a class template: 
type Node<T> = class 

data: T; 

next: Node<T>; 

public constructor Create(d: T; nxt: Node<T>); 

begin 

data := d; next := nxt; 

end; 

end; 

Stack<T> = class 

tp: Node<T>; 

public procedure Push(x: T); 

begin 

tp := new Node<T>(x,tp); 

end; 

function Pop: T; 

begin 

Result := tp.data; 

tp := tp.next; 

end; 

function Top: T; 

begin 

Result := tp.data; 

end; 

function IsEmpty: boolean; 

begin 

Result := tp = nil; 

end; 

end; 

The use of the class template is illustrated below: 
var 

si: Stack<integer>; 



 

sr: Stack<real>; 

begin 

si := new Stack<integer>; 

sr := new Stack<real>; 

for var i := 1 to 10 do 

si.Push(Random(100)); 

while not si.IsEmpty do sr.Push(si.Pop); 

while not sr.IsEmpty do write(sr.Pop,' '); 

end. 

Substitution of a particular type-parameter into a generalized type is 
called instantiation.



 

Generalized subprograms: overview  
A generic subprogram is a subprogram that is parameterized by one 
or more types. A subprogram is formed from a generic subprogram 
by substituting specific types as parameters. Parameters are 
specified after the subprogram name in angle brackets. 

For example, the following generalized function is parameterized 
with one parameter: 

function FindFirstInArray<T>(a: array of T; val: T): 

integer; 

begin 

Result := -1; 

for var i:=0 to a.Length-1 do 

if a[i]=val then 

begin 

Result := i; 

exit; 

end; 

end; 

var x: array of string; 

begin 

SetLength(x,4); 

x[0] := 'Vanya'; 

x[1] := 'Kolya'; 

x[2] := 'Seryozha'; 

x[3] := 'Sasha'; 

writeeln(FindFirstInArray(x,'Seryozha')); 

end. 

When calling a generalized subroutine, the type-parameter 

generalization can be omitted, because the compiler outputs the 

types of the template parameters by the types of the actual 

parameters. In this case, after the output obtained: T=string. 

The exact match of types is required in the derivation; type 
conversions are not allowed. For example, when compiling the 
following code 

var x: array of real; 

begin 

SetLength(x,3); 

x[0] := 1; 

x[1] := 2.71; 

x[2] := 3.14; 

writeeln(FindFirstInArray(x,1)); end. 



 

an error will occur. The reason is that the first parameter is of type 
array of real and the second is of type integer, which does not 
correspond to any type T in the header of the generalized function. 
To solve the problem, either change the type of the second 
parameter to real: 

FindFirstInArray(x,1.0) 

or explicitly after the function name in angle brackets specify the 
type name with which the call is parameterized: 

FindFirstInArray&<real>(x,1) 

The use of the & sign here is mandatory, because otherwise the 
compiler interprets the < sign as "less than". 

Not only ordinary subroutines can be generalized, but also methods 
of classes and methods of another generalized class. For example: 

type 

Pair<T,Q> = class 

first: T; 

Q; 

function ChangeSecond<S>(newval: S): Pair<T, S>; end; 

function Pair<T,Q>.ChangeSecond<S>(newval: S): Pair<T,S>; 

begin 

result := new Pair<T,S>; 

result.first := first; 

result.second := newval; 

end; 

var 

x: Pair<integer,real>; 

y: Pair<integer,string>; 

begin 

x := new Pair<integer,real>; 

x.first := 3; 

y := x.ChangeSecond('abc'); 

writeeln(y.first, y.second); 

end. 

When finished, this program will output 3abc.



 

Generalized subprograms as parameters  

A generalized subprogram can act as a formal parameter of another 
generalized subprogram. 

For example, the system.Array class has several static generalized 

methods with generalized routines as parameters. For example, 
System.Array.Find has the following prototype: 

System.Array.FindAll<T>(a: array of T; pred: Predicate<T>): 

array of T; 

and returns a subarray of the array a of elements t satisfying the 

condition pred. 

Here is an example of how to call this function: 
function f(x: integer): boolean; 

begin 

Result := ; 

end; 

var a := Seq(1,3,6,5,8); 

var b := System.Array.FindAll(a,x -> x mod 2 = 0); 

This returns an array b containing all even values of array a in the 

same order.



 

Restrictions on parameters of generalized 
subprograms and classes  

By default, you can do only a limited set of actions with variables of 
the parameter type of a generalized class or subprogram inside 
methods of generalized classes and generalized subprograms: 
assignment and equality comparison (note that in NET equality 
comparison inside generalizations is forbidden!). 

For example, this code will work: 
function Eq<T>(a,b: T): boolean; 

begin 

Result := a = b; 

end; 

You can also use assigning a default value to a variable that has the 
parameter type of a generalized class or subprogram using the 
default(T) construct - the default value for type t (nil for referential 

types and zero for dimensional types): 
procedure Def<T>(var a: T); 

begin 

a := default(T); 

end; 

However, this code 
function Sum<T>(a,b: T): T; 

begin 

Result := a + b; 

end; 

will cause a compilation error before instantiation (creating an 
instance with a particular type). This behavior in .NET is radically 
different from templates in C++, where any operations with template 
parameters can be used in the template code, and the error can 
occur only at the moment of instantiation with a specific type. 

To allow certain actions on variables of the parameter type of a 
generalized class or subprogram, the restrictions on generalized 
parameters set in the section after the subprogram or class header 
are used: 

type 

MyPair<T> = class 

where T: System.ICloneable; 

private x,y: T; 



 

public 

constructor (x,y: T); 

begin 

Self.x := x; 

Self.y := y; 

end; 

function Clone: MyPair; 

begin 

Result := new MyPair<T>(x.Clone,y.Clone); 

end; 

end; 

The following restrictions are listed in the where section, separated 

by commas: 
In 1st place: the word class or the word record or the name of the 

ancestor class. 
In 2nd place: a comma-separated list of interfaces to be 
implemented. In 3rd place: the word constructor, indicating that this 

type should have a default constructor. 

In this case, each of the seats, except one, can be empty. 

For each type-parameter there can be a different where section, each 

where section ends with a semicolon. 

Example. A generalized function to find the minimum element in an 

array. The elements must implement the IComparable<T> interface. 
function MinElem<T>(a: array of T): T; 

where T: IComparable<T>; 

begin 

var min := a[0]; 

for var i := 1 to a.High do 

if a[i].CompareTo(min)<0 then min := a[i]; 

Result := min; 

end; 

Unfortunately, there is no way to use the entry a[i]<min because the 
operations are not part of the interfaces.



 

La mbda-o-rare  
A lambda-expression is a special kind of expression that is replaced 
at the compilation stage with the name of a subprogram 
corresponding to the lambda-expression and generated by the 
compiler "on the fly". 

The full syntax of lambda expressions is laid out here. 

Here we talk aboutcapturing lambda-expression variables from an 
external context. 

Lambda expressions may not be used when initializing class or 
record fields, within nested subprograms, in a subprogram if there is 
a nested subprogram, in a module initialization section. 

Lambda expressions may not be used together with label labels and 
goto statements in the same subroutine. 

The syntax of lambda expressions is quite complex and is illustrated 
in this paragraph by examples. 

Example 1. 
var f: integer -> integer := x -> x*x; 

f(2); 

The entry x -> x is a lambda expression, which is a function with 
one parameter x of type integer that returns x*x of type integer. 

Based on this entry the compiler generates the following code: 
function #fun1(x: integer): integer; 

begin 

Result := x*x; 

end; 

- • •• 

var f: integer -> integer := #fun1; 

f(2); 

Here #funi is the name generated by the compiler. In addition, the 

#funi function code is also generated by the compiler. 

Example 2. Filtering of even 

Usually a lambda expression is passed as a subroutine parameter. 
For example, in the following code 

var a := Seq(3,2,4,8,5,5); 
a.Where(x -> x mod 2 = 0).Print; 

The lambda expression x -> x mod 2 = 0 sets the condition for 



 

selecting even numbers from the array a. 

Example 3. Sum of squares 
var a := Seq(1,3,5); 
writeeln(a.Aggregate(0,(s,x)->s+x*x)); 

Sometimes it is necessary to explicitly specify the type of parameters 
in the lambda-expression. 

Example 4. Selecting an overloaded version of a procedure with a 
lambda parameter. 

procedure p(f: integer -> integer); 
begin 
write(f(1)); 

end; 

procedure p(f: real -> real); 
begin 
write(f(2.5)); 

end; 

begin 
p((x: real)->x*x); 

end. 

In this example, calling p(x -> x) will cause a compilation error 
because the compiler cannot choose which version of procedure p to 
choose. Specifying the type of the lambda parameter helps eliminate 
this ambiguity. 

Example 5. Lambda procedure. 
procedure p(a: integer -> (); 
begin 
a(1) end; 

begin 
p(procedure(x) -> write(x)); 

end. 

Capturing variables in a lambda expression  

A lambda expression can use variables from an external context. 
Such variables are called captured lambda expressions. 

Example 1. Capturing a variable in a Select query. 
begin var a := Seq(2,3,4); 

var z := 1; 

var q := a.Select(x->x+z); 

q.Println; 

z := 2; 

q.Println; 

end. 



 

Here the lambda expression x->x+z captures the external variable z. 

It is important to note that when the value of the variable z changes, 
the query a.Select(x->x+z), stored in the variable q, is executed 

with the new value of z. 

Example 2. Accumulation of the sum in an external variable. 
begin 

var sum := 0; 

var AddToSum: integer -> () := procedure (x) -> begin sum 

+= x; end; 

AddToSum(1); 

AddToSum(3); 

AddToSum(5); 

writeln(sum); end.



 

Sequence methods  

All sequences have many sequence processing methods 
implemented as extensionmethods.



 

List of sequence methods  
• Printmethods (PascalABC.NET only) 
• Filtering method Where 
• Select projection method 
• SelectMany projection method 
• methodsды Take,TakeWhile,SkiSkip,SkipWhile 
• Sorted,SortedDescendingmethods (PascalABC.NET only) 
• methodsды OrderBy,OrderByDescendingg 
• The ThenBy,ThenByDescending methods 
• ForEach method (PascalABC.NET only) 
• Concat Method 
• JoinIntoStringmethod (PascalABC.NET only) 
• Zip Method 
• Distinct method 
• Union,Intersect,Except methods 
• Reverse method 
• The SequenceEqual method 
• methodsды First,FirstOrDefault 
• methodsды Last,LastOrDefault 
• methodsды SinSingle,SingSingleOrDefault 
• DefaultIfEmpty method 
• methodsды ElementAt,ElementAtOrDefault 
• Methodsды AnAny, All 
• Count Methods 
• Method Contains 
• Aggregate method 
• methodsды Sum,AveraAverage 
• methodsды Min,Max 
• Join method 
• GroupJoin method 
• GroupBy method 
• AsEnumerable method 
• methodsды ToArray,ToList 
• ToDictionary method 
• ToLookup method 
• The OfType method 
• Cast Method

https://calibre-pdf-anchor.n/%23Take,%20TakeWhile,%20Skip,%20SkipWhile.html
https://calibre-pdf-anchor.n/%23OrderBy,%20OrderByDescending.html
https://calibre-pdf-anchor.n/%23First,%20FirstOrDefault.html
https://calibre-pdf-anchor.n/%23Last,%20LastOrDefault.html
https://calibre-pdf-anchor.n/%23Single,%20SingleOrDefault.html
https://calibre-pdf-anchor.n/%23ElementAt,%20ElementAtOrDefault.html
https://calibre-pdf-anchor.n/%23Any,%20All.html
https://calibre-pdf-anchor.n/%23Sum,%20Average.html
https://calibre-pdf-anchor.n/%23Min,%20Max.html
https://calibre-pdf-anchor.n/%23ToArray,%20ToList.html


 

Print methods  

Description of methods  
The methods are given for a sequence of t. function 
Print(delim: string := ' '): sequence of T; 

Displays the sequence on the screen, using delim as a 
delimiter. 
function Println(delim: string := ' '): sequence of T; 

Displays the sequence on the screen, using delim as a 
delimiter, and jumps to a new line.



Example 

 

begin 

var a := Arr(1,3,5); 

a.Println; 

ReadLines('a.txt').Println(NewLine); end.



 

Filtering method Where  

Description of methods  
The methods are given for a sequence of t. The function 
Where(predicate: T->boolean): sequence of T; 

Performs filtering of a sequence of values based on a given 
predicate. Returns a subsequence of values of the original 
sequence that satisfy the predicate. 
function Where(predicate: (T,integer)->boolean): sequence of 

T; 

Performs filtering of the sequence of values based on the 
given predicate, taking into account the element index. Returns a 
subsequence of values of the original sequence that satisfy the 
predicate.



Example 

 

begin 

var a := Arr(1,2,3,5,6); 

a.Where(x -> x mod 2 = 0).Println; // 2 6 end.



 

Select projection method  

Description of methods  
The methods are given for the sequence of t. The function 
Select<Res>(selector: T->Res): sequence of Res; 

Projects each element of the sequence onto another element 
using the selector function. Returns the sequence of elements 
resulting from the projection. 
function Select<Res>(selector: (T,integer)->Res): sequence of 

Res; 

Projects each element of the sequence onto another element 
using the selector function, taking the index of the element into 
account. Returns the sequence of elements resulting from the 
projection.



Example 

 

begin 

var a := Arr(1,2,3,4,5,6); 

a.Select(x -> x*x).Println; // 1 4 9 16 25 36 end.



 

SelectMany projection method  

Description of methods  
The methods are given for the sequence of t. The function 
SelectMany<Res>(selector: T-> sequence of Res): sequence of 

Res; Projects each element of the sequence into a new sequence 

and merges the resulting sequences into one sequence. Returns the 
merged sequence. 
function SelectMany<Res>(selector: (T,integer)-> sequence of 

Res): sequence of Res; 

Projects each sequence element into a new sequence, taking 
the element index into account, and combines the resulting 
sequences into one sequence. Returns the merged sequence. 
function SelectMany<Coll,Res>(collSelector: (T,integer)- > 

sequence of Coll; resultselector: (T,Coll)->Res): sequence of 

Res; 

Projects each sequence element into a new sequence, 

combines the resulting sequences into one, and calls the result 

selector function for each element of that sequence. The index of 

each element in the original sequence is used in the intermediate 

projected form of that element. Returns the combined sequence. 
Function SelectMany<Coll,Res>(collSelector: T-> sequence of 

Coll; resultselector: (T,Coll)->Res): sequence of Res; 

Projects each sequence element into a new sequence, merges 
the resulting sequences into one, and calls the result selector 
function for each element of that sequence. Returns the merged 
sequence.



Example 

 

begin 

var a := Arr(Arr(1,2,3),Arr(4,5,6),Arr(7,8,9)); 

a.SelectMany(x -> x).Println; // 1 2 3 4 5 6 7 8 9 end.



 

Take, TakeWhile, Skip, SkipWhile methods  

Description of methods  
The methods are given for a sequence of t. function Take(count: 

integer): sequence of T; Returns a sequence of count elements 

from the beginning of the sequence. 
function TakeWhile(predicate: T->boolean): sequence of T; 

Returns the chain of sequence elements satisfying the 
specified condition, up to the first non-satisfying one. 
function TakeWhile(predicate: (T,integer)->boolean): sequence 

of T; 

Returns the chain of sequence elements satisfying the 
specified condition, up to the first non-satisfying one (the element 
index is taken into account). 
function Skip(count: integer): sequence of T; 

Skips count elements in the sequence and returns the 
remaining elements. 
function SkipWhile(predicate: T->boolean): sequence of T; 

Skips through the elements in the sequence as long as they 
satisfy the given condition, and then returns the remaining 
elements. 
function SkipWhile(predicate: (T,integer)->boolean): sequence 

of T; 

Skips through the elements in the sequence as long as they 
satisfy the given condition, and then returns the remaining 
elements (the element index is taken into account).



Example 

 

begin 
var a := Arr(1,2,3,4,5,6); 

a.Take(3

) 
a.Skip(3

) 
a.Skip(2

) 

I.Printin; // 1 2 3 
l.Printin; // 4 5 6 
l.Take(3).Println; // 3 4 5 

a.TakeWhile(x -> x<3).Println; // 1 2 
a.SkipWhile(x -> x<5).Println; // 5 6 end.



 

Sorted, SortedDescending methods  

Description of methods  
The methods are given for a sequence of t. The function 

Sorted(): sequence of T; Returns an ascending sorted 

sequence. 
function SortedDescending(): sequence of T; 

Returns the sequence sorted in descending order.



 

Example  
begin 

var a := Arr(6,2,7,4,8,1); 
a.Sorted.Println; // 1 2 4 6 7 
a.SortedDescending.Println; // 

end. 

8 
8 7 6 4 2 1 



OrderBy, OrderByDescending methods 

 

Description of methods  
The methods are given for the sequence of t. 
function OrderBy<Key>(keySelector: T->Key): 

System.Linq.IOrderedEnumerable<T>; Sorts sequence elements in 
ascending key order and returns the sorted sequence. KeySelector 
is a function that projects an element onto a key. 
function OrderBy<Key>(keySelector: T->Key; comparer: 

IComparer<Key>): System.Linq.IOrderedEnumerable<T>; 

Sorts the elements of the sequence in ascending order using 
comparer and returns the sorted sequence. keySelector is a function 
that projects an element onto a key. 
function OrderByDescending<Key>(keySelector: T->Key): 

System.Linq.IOrderedEnumerable<T>; 

Sorts the sequence elements in descending key order and 
returns the sorted sequence. keySelector is a function that projects 
an element onto the key. 
function OrderByDescending<Key>(keySelector: T->Key; comparer: 

IComparer<Key>): System.Linq.IOrderedEnumerable<T>; 

Sorts the sequence elements in descending order using 
comparer and returns the sorted sequence. keySelector is a function 
that projects an element onto a key.



Example 

 

begin 

var a := Agg(('Ivanov',20),('Popov',21),('Avilov',28)); 

a.OrderBy(t -> t[0]).Println; 

(Ivanov,20) (Popov,21) 

a.OrderByDescending(t -> t[1]).Println; // (Avilov,28) 

(Popov,21) (Ivanov,20) 

end.

// (Avilov,28) 



The ThenBy,ThenByDescending methods 

 

Description of methods  

Methods are given for sequence of t. function 
ThenBy<Key>(keySelector: T->Key): 

System.Linq.IOrderedEnumerable<T>; Performs additional ordering 

of sequence elements in ascending key order and returns the 

sorted sequence. KeySelector is a function that projects an 

element onto a key. 
function ThenBy<Key>(keySelector: T->Key; comparer: 

IComparer<Key>): System.Linq.IOrderedEnumerable<T>; 

Performs an additional ordering of the sequence elements in 
ascending order using comparer and returns the sorted sequence. 
keySelector is a function that projects an element to a key. 
function ThenByDescending<Key>(keySelector: T->Key): 

System.Linq.IOrderedEnumerable<T>; 

Performs additional ordering of the sequence elements in 
descending key order and returns the sorted sequence. 
keySelector is a function that projects an element onto the key. 
function ThenByDescending<Key>(keySelector: T->Key; comparer: 

IComparer<Key>): System.Linq.IOrderedEnumerable<T>; 

Performs additional ordering of the sequence elements in 
descending order using comparer and returns the sorted sequence. 
keySelector is a function that projects an element onto a key.



Example 

 

begin 

var a := Agg((('Ivanov', 20), ('Popov', 21), ('Ivanov', 

18), ('Avilov', 28), ('Ivanov', 25)); 

a.OrderBy(t -> t[0]).ThenBy(t -> t[1]).Println; 

// (Avilov,28) (Ivanov,18) (Ivanov,20) (Ivanov,25) 

(Popov,21) end.



 

Concat Method  

Description of methods  
The methods are given for the sequence of t. The function 
Concat(second: sequence of T): sequence of T; 

Connects the two sequences by appending the second to the 
end of the first and returning the resulting sequence.



Example 

 

begin 
var al := Lst(2,3,5); 

var a2 := 

al.Concat 

end. 

Seq(4,7,8); 
(a2).Println; // 2 3 5 4 7 

8 



 

Zip Method  

Description of methods  
The methods are given for a sequence of t. function 
Zip<TSecond,Res>(second: sequence of TSecond; resultsselector: 

(T,TSecond)->Res): sequence of Res; 

Combines two sequences using the specified function, taking 
one element of each sequence and returning the element of the 
resulting sequence.



Example 

 

begin 

var a := Arr(1,2,3); 

var b := Lst(4,5,6); 

a.Zip(b,(x,y) -> x+y).Println; // 5 7 9 end.



 

Distinct method  

Description of methods  
The methods are given for the sequence of t. 

function Distinct(): sequence of T; Returns the divergent 

elements of the sequence. 
function Distinct(comparer: IEqualityComparer<T>): sequence of 

T; 

Returns the differing elements of the sequence, using the 
comparer to compare values.



Example 

 

begin 

var a := Arr('aaa','bbb','ccc','aaa','ccc'); 

a.Distinct.Println; // aaa bbb ccc 

end.



 

Union,Intersect,Except methods  

Description of methods  
The methods are given for the sequence of t. The function 
Union(second: sequence of T): sequence of T; 

Finds the union of sets represented by two sequences. 
function Union(second: sequence of T; comparer: 

IEqualityComparer<T>): sequence of T; 

Finds the union of sets represented by two sequences using the 
specified comparator. 
function Intersect(second: sequence of T): sequence of T; 

Finds the intersection of sets represented by two sequences. 
function Intersect(second: sequence of T; comparer: 

IEqualityComparer<T>): sequence of T; 

Finds the intersection of sets represented by two sequences, 
using the specified comparator to compare values. 
function Except(second: sequence of T): sequence of T; 

Finds the difference of sets represented by two sequences. 
function Except(second: sequence of T; comparer: 

IEqualityComparer<T>): sequence of T; 

Finds the difference of sets represented by two sequences, 
using the specified comparator to compare values.



Example 

 

 
begin 

var a := Range(1,5); 

var b := Range(3,7); 

a.Union(b).Println; 

a.Intersect(b).Println; 

a.Except(b).Println; 

end.

// 1 2 3 4 5 6 7 

// 3 4 5 

// 1 2 



 

Reverse method  

Description of methods  
The methods are given for a sequence of t. Function Reverse(): 

sequence of T; Returns an inverted sequence.



Example 

 

begin 

var a := Range(1,9); 

a.Reverse.Println; // 9 8 7 6 5 4 3 2 1 end.



 

The SequenceEqual method  

Description of methods  
The methods are given for a sequence of t. function 
SequenceEqual(second: sequence of T): boolean; 

Determines if two sequences match. function 
SequenceEqual(second: sequence of T; comparer: 

IEqualityComparer<T>): boolean; 

Determines if two sequences match, using the specified 
comparator to compare elements.



Example 

 

begin 

var a := Arr(1,2,3); 

var b := Lst(1,2,3); a.SequenceEqual(b); 

end.



 

First, FirstOrDefault methods  

Description of methods  
The methods are given for a sequence of t. Function First(): t; 

Returns the first element of the sequence. 
function First(predicate: T->boolean): T; 

Returns the first element of the sequence that satisfies the 
specified condition. 
function FirstOrDefault(): T; 

Returns the first element of the sequence or the default value if 
the sequence contains no elements. 
function FirstOrDefault(predicate: T->boolean): T; 

Returns the first element of the sequence that satisfies the 
condition, or the default value if no such elements are found.



Example 

 

begin 

var a := Arr(1,2,3,4); 

Println(a.Skip(2).First); // 3 

Println(a.First(x -> x mod 2 = 0); // 2 

Println(a.FirstOrDefault(x -> x>5); // 0 end.



Last, LastOrDefault methods 

 

Description of methods  

The methods are given for a sequence of t. function Last(): T; 

Returns the last element of the sequence. 
function Last(predicate: T->boolean): T; 

Returns the last element of the sequence that satisfies the 
specified condition. 
function LastOrDefault(): T; 

Returns the last element of the sequence or the default value if 
the sequence contains no elements. 
function LastOrDefault(predicate: T->boolean): T; 

Returns the last element of the sequence that satisfies the 
specified condition, or the default value if no such elements are 
found.



Example 

 

begin 

var a := Arr(1,2,3,4); 

Println(a.Last); // 4 

Println(a.Last(x -> x mod 2 = 0); // 4 

Println(a.LastOrDefault(x -> x>5); // 0 end.



 

Single, SingleOrDefault methods  

Description of methods  
The methods are given for a sequence of t. function Single(): 

T; Returns a single element of the sequence and generates an 

exception if the number of elements in the sequence is different 
from 1. 
function Single(predicate: T->boolean): T; 

Returns the only sequence element that satisfies the given 
condition, and generates an exception if there is more than one 
such element. 
function SingleOrDefault(): T; 

Returns a single sequence element or the default value if the 
sequence is empty; an exception is generated if there is more than 
one element in the sequence. 
function SingleOrDefault(predicate: T->boolean): T; 

Returns the only sequence element that satisfies the given 
condition, or the default value if no such element exists; if more than 
one element satisfies the condition, an exception is generated.



Example 

 

begin 
var a := Arr(1,2,3,4); 

Println(a.Single); 
Println(a.Single(x 

//exception 
-> x>3); // 4 

Println(a.SingleOrDefault(x -> x>5); // 0 end.



 

DefaultIf Empty method  

Description of methods  
The methods are given for a sequence of t. function 

DefaultIfEmpty(): sequence of T; Returns the elements of the 

specified sequence or a single-element collection containing a 

default type parameter value if the sequence is empty. 
function DefaultIfEmpty(defaultValue: T): sequence of T; 

Returns the elements of the specified sequence or a single-
element collection containing the specified value if the sequence is 
empty.



Example 

 

begin 

var a := Arr(1,2,3,4); 

a.Skip(4).DefaultIfEmpty.Println; // 0 end.



 

ElementAt, ElementAtOrDefault methods  

Description of methods  
The methods are given for a sequence of t. function 

ElementAt(index: integer): T; Returns an element at the specified 

index in the sequence. 
function ElementAtOrDefault(index: integer): T; 

Returns the item at the specified index in the sequence or the 
default value if the index is outside the valid range.



Example 

 

begin 

var a := Arr(1,2,3,4); 

Println(a.ElementAt(2)); // 3 

Println(a.ElementAtOrDefault(10)); // 0 end.



 

Methods Any, All  

Description of methods  
The methods are given for a sequence of t. function Any(): 

boolean; Checks if the sequence contains any elements. 
function Any(predicate: T->boolean): boolean; 

Checks if any element of the sequence satisfies the given 
condition. 
function All(predicate: T->boolean): boolean; 

Checks if all elements of the sequence satisfy the condition.



 

Example  
begin 

var a := Lst(1,3,5); 
Println(a.All(x -> x mod 2 <> 0)); // 
Println(a.Any(x -> x mod 2 = 0)); // 

end. 

True 
False 



 

Count Methods  

Description of methods  
The methods are given for a sequence of t. function Count(): 

integer; Returns the number of elements in the sequence. 
function Count(predicate: T->boolean): integer; 

Returns a number representing the number of sequence 
elements satisfying the given condition. 
function LongCount(): int64; 

Returns a value of type Int64 representing the total number of 
elements in the sequence. 
function LongCount(predicate: T->boolean): int64; 

Returns a value of type Int64, representing the number of 
sequence elements satisfying the given condition.



Example 

 

begin 

var a := Lst(1,3,5,6); 

Println(a.Count(x -> x mod 2 <> 0)); // 3 end.



 

Method Contains  

Description of methods  
Methods are given for a sequence of t. function 

Contains(value: T): boolean; Determines whether the specified 

element is contained in the sequence, using the default equality 

check comparer. function Contains(value: T; comparer: 
IEqualityComparer<T>): boolean; 

Determines if the sequence contains a given element using 
the specified comparator.



Example 

 

begin 

var a := Lst(1,3,5,6); 

Println(a.Contains(666)); // False 

Println(666 in a); // False end.



 

Aggregate method  

Description of methods  
The methods are given for a sequence of t. function 

Aggregate(func: (T,T)->T): T; Applies an aggregate function to 

the sequence. Returns the final aggregate value. 
function Aggregate<Accum>(seed: T; func: (Accum,T)->Accum): T; 

Applies an aggregate function to the sequence. The specified 
initial value is used as the initial value of the aggregate operation. 
Returns the final aggregate value. 
function Aggregate<Accum,Res>(seed: T; func: (Accum,T)->Accum; 

resultsselector: Accum->Res): T; 

Applies an aggregate function to the sequence.The specified 
initial value serves as the initial value for the aggregate operation, 
and the specified function is used to select the resulting value. 
Returns the final aggregate value.



Example 

 

 
begin 

var a := Seq(2,3,5,6); 

Println(a.Aggregate(1,(p,x) end.

-> p*x)); 



Sum, Average methods 

 

Description of methods  

The methods are given for a sequence of ts. function Sum(): 

number; Calculates the sum of a sequence of numeric type values. 
function Sum(selector: t->number): number; 

Calculates the sum of a sequence of numeric type values 
resulting from applying a conversion function to each element of 
the input sequence. 
function Average(): real; 

Calculates the average for a sequence of numeric type values. 
function Average(selector: t->number): real; 

Calculates the average for a sequence of numeric type values 
resulting from applying a conversion function to each element of 
the input sequence.



Example 

 

begin 

var a := Lst(1,3,5,6); 

Println(a.Sum); 

var b := Agg(('Ivanov',20),('Popov',21),('Avilov',28)); 

Println(b.Average(x -> x[1])); 

end.



 

Min, Max methods  

Description of methods  
The methods are given for a sequence of values of t. function 

Min(): number; Calculates the minimum element of a sequence of 

numeric type values. 
function Min(selector: t->number): number; 

Calls a conversion function for each element of the sequence 
and returns the minimum value of the numeric type. 
function Max(): number; 

Calculates the maximal element of a sequence of numeric 
type values. 
function Max(selector: t->number): number; 

Calls a conversion function for each element of the sequence 
and returns the maximum value of the numeric type.



Example 

 

begin 

var a := Lst(1,3,5,6); 

Println(a.Min, a.Max); 

var b := Agg(('Ivanov',20),('Popov',21),('Avilov',28)); 

Println(b.Min(x -> x[1])); 

end.



 

Join methods  

Description of methods  
The methods are given for a sequence of t. function 
Join<TInner,Key,Res>(inner: sequence of Tinner; 

outerKeySelector: T->Key; innerKeySelector: TInner->TKey; 

resultselector: (T,TInner)->Res): sequence of Res; 

Combines two sequences based on key mapping into a third 
sequence. The function resultSelector sets the projection of the 
elements of two sequences with the same key values into the 
element of the third sequence. 
function Join<TInner,Key,Res>(inner: sequence of Tinner; 

outerKeySelector: T->Key; innerKeySelector: TInner->TKey; 

resultselector: (T,TInner)->Res; comparer: 

System.Collections.Generic.IEqualityComparer<Key>): sequence 

of Res; 

Combines two sequences based on key mapping into a third 
sequence. The function resultSelector sets the projection of 
elements of two sequences with the same key values into the 
element of the third sequence. The comparer is used for key 
comparison.



Example 

 

begin 

var people := Agg((1,'Ivanov'),(2,'Popov'), 

(3,'Sidorov')); 

var subjects := Agg((1,'History'),(1,'Math'), 

(2,'History') 

,(3,'Math'),(1,'Russian'),(2,'Physics')); 

people.Join(subjects,p->p[0],s->s[0],(p,s)-> 

(p[1],s[1])).Println(NewLine); 

end. 

Conclusion: 

(Ivanov,History) (Ivanov,Mathematics) (Ivanov,Russian) 

(Popov,History) (Popov,Physics) (Sidorov,Mathematics)



 

GroupJoin method  

Description of methods  
The methods are given for the sequence of T. function 
GroupJoin<TInner,Key,Res>(inner: sequence of Tinner; 

outerKeySelector: T->Key; innerKeySelector: TInner->TKey; 

resultselector: (T,sequence of TInner)->Res): sequence of Res; 

Combines two sequences based on key equality and groups 

the results. The resultSelector function then projects the key and 

the sequence of corresponding values onto the element of the 

resulting sequence. function GroupJoin<TInner,Key,Res>(inner: 
sequence of Tinner; outerKeySelector: T->Key; 

innerKeySelector: TInner->TKey; resultselector: (T,sequence of 

TInner)->Res; comparer: IEqualityComparer<Key>): sequence of 

Res; 

Combines two sequences based on key equality and groups 
the results. The specified comparator is used to compare the keys. 
The resultSelector function then projects the key and the sequence 
of corresponding values onto an element of the resulting sequence.



Example 

 

begin 

var people := Agg((1,'Ivanov'),(2,'Popov'), 

(3,'Sidorov')); 

var subjects := Agg((1,'History'),(1,'Math'), 

(2,'History') 

,(3,'Math'),(1,'Russian'),(2,'Physics')); 

people.GroupJoin(subjects,p->p[0],s->s[0],(p,ss)-> 

(p[1],ss.Select(x->x[1]))).Println(NewLine); 

end. 

Conclusion: 

(Ivanov,[History,Mathematics,Russian]) 

(Popov,[History,Physics]) 

(Sidorov,[Mathematics])



 

GroupBy method  

Description of methods  
Methods are given for sequence of t. function 
GroupBy<Key>(keySelector: T->Key): 

IEnumerable<IGrouping<Key,T>>; Groups sequence elements 

according to the given key selector function and returns a sequence 

of groups; each group corresponds to one key value. function 
GroupBy<Key>(keySelector: T->Key; comparer: 

System.Collections.Generic.IEqualityComparer<Key>): 

IEnumerable<IGrouping<Key,T>>; 

Groups the elements of the sequence according to the specified 
key selector function, compares the keys with the specified 
comparator, and returns a sequence of groups; each group 
corresponds to one key value. 
function GroupBy<Key,Element>(keySelector: T->Key; 

elementselector: T->Element): IEnumerable<IGrouping<Key,T>>; 

Groups the elements of the sequence according to the specified 
key selector function and projects the elements of each group using 
the specified function. Returns a sequence of groups; each group 
corresponds to one key value. 
function GroupBy<Key,Element>(keySelector: T->Key; 

elementselector: T->Element; comparer: 

IEqualityComparer<Key>): IEnumerable<IGrouping<Key,Element>>; 

Groups the elements of the sequence according to the key 
selector function.The keys are compared using the comparator, the 
elements of each group are projected using the specified function. 
function GroupBy<Key,Res>(keySelector: T->Key; resultselector: 

(Key,sequence of T)->Res): sequence of Res; 

Groups the sequence elements according to the specified key 
selector function and creates a resulting value for each group and its 
key. 
function GroupBy<Key,Element,Res>(keySelector: T->Key; 

elementsselector: T->Element; resultsselector: (Key,sequence of 

Element)->Res): sequence of Res; 

Groups the elements of a sequence according to the specified 
key selector function and creates a resulting value for each group 
and its key.The elements of each group are projected using the 



 

specified function. 
function GroupBy<Key,Res>(keySelector: T->Key; resultselector: 

(Key,sequence of T)->Res; comparer: IEqualityComparer<Key>): 

sequence of Res; 

Groups the elements of the sequence according to the specified 
key selector function and creates a resulting value for each group 
and its key.The keys are compared using the specified comparator. 
function GroupBy<Key,Element,Res>(keySelector: T->Key; 

elementselector: System.T->Element; resultselector: 

(Key,sequence of Element)->Res; comparer: 

IEqualityComparer<Key>): sequence of Res; 

Groups the elements of the sequence according to the specified 
key selector function and creates a resulting value for each group 
and its key.The key values are compared using the specified 
comparator, and the elements of each group are projected using the 
specified function.



Example 

 

begin 
var a := Agg(('Ivanov',3),('Popov',1),('Avilov',1) 

('Kozlov',3) var 

groups := 
,(,Donkeys',2),(,Rogues',1)); 
a.GroupBy(s->s[1]); 

foreach var g 

begin 
In groups do 

Print(g.Key+':'); 
g.Select(x->x[0]).Println; 

end; 

end. 

Conclusion: 

3: Ivanov Kozlov 
1: Popov Avilov Rogov 
2: Donkeys



 

AsEnumerable method  

Description of methods  
The methods are given for a sequence of t. function 

AsEnumerable(): sequence of T; Returns input data reduced to the 

type IEnumerable.



Example 

 

function Print<T>(Self: array of T): array of T; 

extensionmethod; 

begin 

Self.AsEnumerable.Print; 

Result := Self; 

end; 

begin 

Arr(1,2,3).Print end.



 

ToArray, ToList methods  

Description of methods  
The methods are given for a sequence of t. function ToArray(): 

array of T; Creates an array from the sequence. 
function ToList(): List<T>; 

Creates a List from the sequence.



Example 

 

begin 

var a := Arr(1,2,3); 

a := a.Select(x->x*x).ToArray; 

var l := Lst(1,2,3); 

l := l.Select(x->x*x).ToList; end.



ToDictionary method 

 

Description of methods  
The methods are given for a sequence of t. function 
ToDictionary<Key>(keySelector: T->Key): Dictionary<Key,T>; 

Creates a Dictionary from a sequence according to the given key 
selector function. 
function ToDictionary<Key>(keySelector: T->Key; comparer: 

IEqualityComparer<Key>): Dictionary<Key,T>; 

Creates a Dictionary from the sequence according to the 
specified key selector and key comparator function. 
function ToDictionary<Key,Element>(keySelector: T->Key; 

elementselector: T->Element): Dictionary<Key,Element>; 

Creates a Dictionary from a sequence according to the specified 
key selector and item selector functions. 
function ToDictionary<Key,Element>(keySelector: T->Key; 

elementselector: T->Element; comparer: 

IEqualityComparer<Key>): Dictionary<Key,Element>; 

Creates a Dictionary from the sequence according to the 
specified comparator and the functions of the key selector and item 
selector.



Example 

 

begin 

var a := Agg(('crocodile',3),('hippo',1),('tiger',2)); 

var d := a.ToDictionary(x->x[1],x->x[0]); 

d.Println; // (3,crocodile) (1,hippo) (2,tiger) end.



ToLookup method 

 

Description of methods  
The methods are given for the sequence of t. function 
ToLookup<Key>(keySelector: T->Key): 

System.Linq.ILookup<Key,T>; Creates a System.Linq.Lookup 
object from the sequence according to the specified key selector 
function. 
function ToLookup<Key>(keySelector: T->Key; comparer: 

IEqualityComparer<Key>): System.Linq.ILookup<Key,T>; 

Creates a System.Linq.Lookup object from the sequence 
according to the specified key selector and key comparator 
function. 
function ToLookup<Key,Element>(keySelector: T->Key; 

elementselector: T->Element): 

System.Linq.ILookup<Key,Element>; 

Creates a System.Linq.Lookup object from the sequence 
according to the specified key selector and item selector functions. 
function ToLookup<Key,Element>(keySelector: T->Key; 

elementselector: T->Element; comparer: 

IEqualityComparer<Key>): System.Linq.ILookup<Key,Element>; 

Creates a System.Linq.Lookup object from the sequence 
according to the specified comparator and key selector and item 
selector functions.



 

Example  

Without an example



 

The OfType method  

Description of methods  
The methods are given for the sequence of t. Function 

OfType<Res>(): sequence of Res; Performs filtering of elements of 

System.Collections.IEnumerable object by the given type. Returns a 

subsequence of the given sequence. in which all elements belong to 

the given type.



Example 

 

begin 

var a := new object[](1,2.5,'d','ff',3.4); 

a.OfType&<real>().Println; 

end.



 

Cast Method  

Description of methods  
The methods are given for the sequence of t. function 

Cast<Res>(): sequence of Res; Converts elements of a 

System.Collections.IEnumerable object to the specified type.



Example 

 

begin 

var a: sequence of integer; 

var b: sequence of real; 

a := Seq(1,3,5); 

b := a.Cast&<real>(); 

end.



 

JoinIntoString method  

Description of methods  
The methods are given for a sequence of t. The function 
JoinIntoString(delim: string := ' '): string; 

Converts the sequence elements to a string representation, 
then combines them to a string using delim as a delimiter.



Example 

 

begin 

var a := Arr('aaa','bbb','ccc'); 

var s: string := a.JoinIntoString(''); 

Println(s); // aaabbbccc 

end.



 

memory management  

All reference types in .NET are managed by a so-called garbage 
collector. This means that the memory allocated by a constructor 
call is never explicitly returned by a destructor call. Once an object is 
no longer needed, it should be assigned nil. 

If there is a shortage of dynamic memory, the program execution is 
paused and a special procedure called garbage collection is started. 
It detects all so-called reachable objects. If no one else points to this 
object, it is considered unreachable and will be collected by the 
garbage collector. The time when the garbage collector is called is 
considered indefinite. 

For example, when executing the code section 
type Person = class - -- end; 

var p: Person := new Person('Ivanov',2 0);- 

-- p := nil; 

memory allocated to p, after assigning it nil, will become 

unreachable and will be collected at an unpredictable moment. 

Note that the dynamic memory allocated by the New procedure and 
controlled by pointers is not under the control of Garbage Collector, 
so it needs to be freed explicitly by calling Dispose. That's why 
working with standard pointers is considered deprecated in 
PascalABC.NET and isn't recommended for use.



 

Overview of the PABCSystem module  

The PABCSystem module is called the system module and is 
automatically the first to be attached to any program or module. It 
contains a number of procedures, functions, constants, types, 
extension methods, and overloaded operations.



 

Standard types and constants  
• СтандаStandard constants 
• СтандаStandard types

https://calibre-pdf-anchor.n/%23Standard%20constants.html
https://calibre-pdf-anchor.n/%23Standard%20types.html


 

Standard subprograms  
• General subprogramsрограммы 
• Mathematical subroutinesрограммы 
• subprogramsрограммы ввоInput 
• subroutinesрограммы вывоOutput 
• Common subroutinesрограммы дfor working with files 
• Subroutinesрограммы дfor working with text files 
• Subroutinesрограммы дfor working with дbinary files 
• Subroutinesрограммы дfor working with file names 
• System subroutinesрограммы 
• Subroutinesрограммы дfor working with symbols 
• Subroutinesрограммы дfor working with strings 
• Subroutinesрограммы дfor working with даstandard sets 
• Subroutinesрограммы дfor working with дdynamic arrays

https://calibre-pdf-anchor.n/%23Common%20subroutines.html
https://calibre-pdf-anchor.n/%23Math%20subroutines.html
https://calibre-pdf-anchor.n/%23Read%20subroutines.html
https://calibre-pdf-anchor.n/%23Write%20subroutines.html
https://calibre-pdf-anchor.n/%23Common%20subroutines%20for%20files.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20text%20files.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20binary%20files.html
https://calibre-pdf-anchor.n/%23Functions%20for%20file%20names.html
https://calibre-pdf-anchor.n/%23System%20subroutines.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20char.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20string.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20set%20of%20T.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20array%20of%20T.html


 

Generating objects of structured types  
• Subroutinesрограммы дfor sequence 

generationдовательностей 
• Subroutinesрограммы дfor generating infinite sequences 
• Subroutinesрограммы дfor generating дdynamic arrays 
• Subroutinesрограммы дfor generating matrices 
• ShortfunctionsLst,HSet,SSet,Dict,KV

https://calibre-pdf-anchor.n/%23Subroutines%20for%20sequence%20generation.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20sequence%20generation.html
https://calibre-pdf-anchor.n/%23Infinite%20sequences.html
https://calibre-pdf-anchor.n/%23Subroutines%20for%20array%20of%20T%20generation.html
file:///C:/Users/chike/AppData/Local/Temp/calibre__cj8vsxp/w9bb4det_pdf_out/Files/Subroutines%20for%20matrix%20generation.html
https://calibre-pdf-anchor.n/%23Short%20functions%20Lst,%20HSet,%20SSet,%20Dict,%20KV.html


 

Extension methods defined in the PABCSystem 
module  

• HYPERLINK "https://calibre-pdf-
anchor.n/%23Extension%20methods%20for%20sequence%20of%
20T.html"Methodsды extending the typesequence of T 

• HYPERLINK "https://calibre-pdf-
anchor.n/%23Extension%20methods%20for%20array%20of%20T.
html"Methodsды typesarray of T 

• methodsды of typearraarray[,]of T 
• methodsды type extensionList<T> 
• Methods forды extending the typeintegerger 
• methodsды typeBiBigIntegerInteger 
• HYPERLINK "https://calibre-pdf-

anchor.n/%23Extension%20methods%20for%20real.html"Methods
ды extending the typereal 

• Methods forды  typechar 
• HYPERLINK "https://calibre-pdf-

anchor.n/%23Extension%20methods%20for%20string.html"Metho
dsды typestrinstring 

• methodsды extensionFunc 
• methodsды extensionComplex 
• methodsды extensionIDictionaryy

https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20array%20%5b,%5d%20of%20T.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20List%20T.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20integer.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20BigInteger.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20char.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20Func.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20Complex.html
https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20IDictionary.html


 

File type methods  
• Common methods of file types 
• Text file methods 
• Typed file methods 
• Binary methods 
• methodsды Typed file extension

https://calibre-pdf-anchor.n/%23Extension%20methods%20for%20typed%20files.html


 

Standard constants  
AllDelimiters = ' <>=l'|~$ §!"#%''()*,+-./:;@[\]_{}"- 

-"'#9#io#i3; Constant - word delimiter characters 
E = 2.718281828459045; 

Constant E 
MaxByte = byte.MaxValue; 

Maximum value of byte type 
MaxDouble = real.MaxValue; 

Maximum value of type double 
MaxInt = integer.MaxValue; 

Maximum value of type integer 
MaxInt64 = int64.MaxValue; 

Maximum value of int64 type 
MaxLongWord = longword.MaxValue; 

Maximum value of the longword type 
MaxReal = real.MaxValue; 

Maximum value of type real 
MaxShortInt = shortint.MaxValue; 

Maximum value of shortint type 
MaxSingle = single.MaxValue; 

Maximum value of type single 
MaxSmallInt = smallint.MaxValue; 

Maximum value of the smallint type 
MaxUInt64 = uint64.MaxValue; 

Maximum value of type uint64 
MaxWord = word.MaxValue; 

Maximum value of word type 
MinDouble = real.Epsilon; 

Minimum positive value of type double 
MinReal = real.Epsilon; 

Minimum positive value of type real 
MinSingle = single.Epsilon; 

Minimum positive value of type single 
NewLine = System.Environment.NewLine; 

Newline constant 

Pi = 3.141592653589793; 



 

Constant Pi



 

Standard types  

Action<T> = system.Action<T>; Represents an action with one 

parameter 
ActionO = System.Action; 

Represents an action without parameters 
Action2<T1, T2> = System.Action<T1, T2>; 

Represents an action with two parameters 
Action3<T1, T2, T3> = System.Action<T1, T2, T3>; 

Represents an action with three parameters 
BigInteger = System.Numerics.BigInteger; 

Represents an arbitrarily large integer cardinal = 

System.UInt32; 

cardinal = longword 
Comparer<T> = System.Collections.Generic.Comparer<T>; 

Represents a base class for implementing the IComparer 
interface 
Complex = System.Numerics.Complex; 

Represents a complex number 
Console = System.Console; 

A class that manages the console window and the console I/O 
DateTime = System.DateTime; 

Represents the date and time 
decimal = System.Decimal; 

Represents a 128-bit real number 
Dictionary<Key, Value> = 

System.Collections.Generic.Dictionary<Key, Value>; 

Represents an associative array (a set of key-value pairs) 

implemented based on the hash table double = System.Double; 

double = real 
Encoding = System.Text.Encoding; 

Character encoding type 
Exception = System.Exception; 

Basic exception type 
Func<T, Res> = System.Func<T, Res>; 

Represents a function with one parameter 
Func0<Res> = System.Func<Res>; 



 

Represents a function without parameters 
Func2<T1, T2, Res> = System.Func<T1, T2, Res>; 

Represents a function with two parameters 
Func3<T1, T2, T3, Res> = System.Func<T1, T2, T3, Res>; 

Represents a function with three parameters 
GC = System.GC; 

The class that controls garbage collection 
HashSet<T> = System.Collections.Generic.HashSet<T>; 

Represents a set of values implemented on the basis of a hash 
table 
ICollection<T> = System.Collections.Generic.ICollection<T>; 

Presents the interface for the collection 
IComparable<T> = IComparable<T>; 

Represents a base class for implementing the IComparer 
interface 
IComparer<T> = System.Collections.Generic.IComparer<T>; 

Represents an interface for comparing two elements 
IDictionary<Key, Value> = 

System.Collections.Generic.IDictionary<Key, Value>; 

Represents the interface for the set of key-value pairs 

IEnumerable<T> = System.Collections.Generic.IEnumerable<T>; 

Represents an interface that provides an enumerator to 
enumerate items in the collection 
IEnumerator<T> = System.Collections.Generic.IEnumerator<T>; 

Represents an interface for enumerating elements of a 

collection IEqualityComparer<T> = 
System.Collections.Generic.IEqualityComparer<T>; 

Provides an interface to support equality comparisons 
IList<T> = System.Collections.Generic.IList<T>; 

Represents the interface for a collection with index access 
IntFunc = Func<integer, integer>; 

Represents a function with one parameter of integer type that 
returns an integer 
ISet<T> = System.Collections.Generic.ISet<T>; 

Represents the interface for KeyValuePair<Key, Value> = 



 

System.Collections.Generic.KeyValuePair<Key, Value>; 

Represents a Key-Value pair for an associative array 
LinkedList<T> = System.Collections.Generic.LinkedList<T>; 

Represents a bilaterally linked list 
LinkedListNode<T> = 

System.Collections.Generic.LinkedListNode<T>; 

Represents a node of a doubly linked list 
List<T> = System.Collections.Generic.List<T>; 

Represents a list based on a dynamic array 
longint = System.Int32; 

longint = integer 
Match = System.Text.RegularExpressions.Match; 

Represents results from a single match of the regular 

expression MatchCollection = 

System.Text.RegularExpressions.MatchCollection; 

Represents the set of successful matches of the regular 

expression MatchEvaluator = 

System.Text.RegularExpressions.MatchEvaluator; 

Represents the method called when a match is found in 
Regex.Replace 
NonSerialized = System.NonSerializedAttribute; 

Indicates that the field of the serializable class should not be 
serialized 
Object = System.Object; 

Basic type of objects 
Predicate<T> = System.Predicate<T>; 

Represents a function with one parameter that returns a 
boolean 
Predicate2<T1, T2> = function(x1: T1; x2: T2): boolean; 

Represents a function with two parameters that returns a 
boolean 
Predicate3<T1, T2, T3> = function(x1: T1; x2: T2; x3: T3): 

boolean; 

Represents a function with three parameters that returns a 
boolean 
Queue<T> = System.Collections.Generic.Queue<T>; 



 

Represents the queue - a set of elements implemented on the 
principle of "first in first out" 
RealFunc = Func<real, real>; 

Represents a function with one parameter of the real type that 
returns a real 
Regex = System.Text.RegularExpressions.Regex; 

Represents a regular expression 
RegexGroup = System.Text.RegularExpressions.Group; 

Presents results from the same group when Regex.Match is 
run 
RegexGroupCollection = 

System.Text.RegularExpressions.GroupCollection; 

Presents results from a set of groups when Regex.Match is run 
RegexOptions = System.Text.RegularExpressions.RegexOptions; 

Represents parameters of a regular expression 
Serializable = System.SerializableAttribute; 

Indicates the ability to serialize the class 
ShortString = string[255]; 

Represents the type of a short string of fixed length 255 
characters 
SortedDictionary<Key, Value> = 

System.Collections.Generic.SortedDictionary<Key, Value>; 

Represents an associative array based on a binary search tree 
SortedList<Key, Value> = 

System.Collections.Generic.SortedList<Key, Value>; 

Represents an associative array (a set of key-value pairs) based 
on a dynamic array of pairs 
SortedSet<T> = System.Collections.Generic.SortedSet<T>; 

Represents a set of values implemented on the basis of a 
binary search tree 
Stack<T> = System.Collections.Generic.Stack<T>; 

Represents the stack - a set of elements, implemented on the 
principle of "last in first out" 
Stopwatch = System.Diagnostics.Stopwatch; 

Provides methods for accurate measurement 
time spent 



 

StringBuilder = System.Text.StringBuilder; 

Represents a modifiable character string 
StringFunc = Func<string, string>; 

Represents a function with one string type parameter that 
returns a string 
Tuple = System.Tuple; 

Represents the motorcade



 

General subprograms  

function CommandLineArgs: array of string; Returns the 

command string arguments with which the program was started 
procedure Dec(var i: integer); 

Reduces the value of variable i by 1 
procedure Dec(var i: integer; n: integer); 

Decreases the value of the variable i by n 
procedure Dec(var e: enumerated type); 

Decreases the value of the enumerated type by 1 
procedure Dec(var e: enumerated type; n: integer); 

Decreases the value of the enumerated type by n 
function Eof: boolean; 

Returns True if the end of the input stream is reached 
function Eoln: boolean; 

Returns True if the end of the string is reached 
procedure Inc(var i: integer); 

Increases the value of variable i by 1 
procedure Inc(var i: integer; n: integer); 

Increases the value of the variable i by n 
procedure Inc(var e: enumerated type); 

Increases the value of the enumerated type by 1 
procedure Inc(var e: enumerated type; n: integer); 

Increases the value of the enumerated type by n 
function Ord(a: integer): integer; 

Returns the sequence number of the value a 
function Ord(a: enumerated type): integer; 

Returns the sequence number of the value a 
function Pred(x: integer): integer; 

Returns the preceding x value 
function Pred(x: enumerated type): enumerated type; 

Returns the preceding x value 
function SeekEof: boolean; 

Skips whitespace, then returns True if the end of the input 
stream is reached 
function SeekEoln: boolean; 

Skips whitespace characters, then returns True if the end of 
the string is reached 
function Succ(x: integer): integer; 

Returns the next value after x 
function Succ(x: enumerated type): enumerated type; 



 

Returns the next value after x 
procedure Swap<T>(var a, b: T); 

Swaps values of two variables



 

Input subprograms  

procedure Read(a,b,...); Enters values a,b,... from the keyboard 
procedure Read(f: file; a,b,...); 

Enters the values a,b,... from the file f 
function ReadBigInteger: BigInteger; 

Returns a value of type BigInteger entered from the keyboard 
function ReadBoolean: boolean; 

Returns a boolean value entered from the keyboard function 
ReadBoolean(prompt: string): boolean; 

Outputs an input prompt and returns a boolean value entered 
from the keyboard 
function ReadBoolean(f: Text): boolean; 

Returns the value of boolean type entered from the text file f 
function ReadChar: char; 

Returns a char value entered from the keyboard function 

ReadChar(prompt: string): char; 

Outputs an input prompt and returns a char value entered from 
the keyboard 
function ReadChar(f: Text): char; 

Returns the char value entered from the text file f 
function ReadChar2: (char, char); 

Returns a tuple of two char values entered from the keyboard 
function ReadChar2(prompt: string): (char, char); 

Returns a tuple of two char values entered from the keyboard 
function ReadChar3: (char, char, char); 

Returns a tuple of three char values entered from the keyboard 
function ReadChar3(prompt: string): (char, char, char); 

Returns a tuple of three char values entered from the keyboard 
function ReadChar4: (char, char, char, char); 

Returns a tuple of four char values entered from the keyboard 
function ReadChar4(prompt: string): (char, char, char, char); 

Returns a tuple of four char values entered from the keyboard 
function ReadInt64: int64; 

Returns a value of int64 type entered from the keyboard 
function ReadInt64(prompt: string): int64; 

Outputs an input prompt and returns an int64 value entered 
from the keyboard 
function ReadInt64(f: Text): int64; 



 

Returns a value of int64 type entered from the text file f 
function Readinteger: integer; 

Returns an integer value entered from the keyboard function 

Readinteger(prompt: string): integer; 

Outputs an input prompt and returns an integer value entered 
from the keyboard 
function Readinteger(f: Text): integer; 

Returns an integer value entered from the text file f 
function Readinteger2: (integer, integer); 

Returns a tuple of two integer values entered from the 
keyboard 
function Readinteger2(prompt: string): (integer, integer); 

Returns a tuple of two integer values entered from the 

keyboard function Readinteger3: (integer, integer, integer); 

Returns a tuple of three integer values entered from the 

keyboard function Readinteger3(prompt: string): (integer, 
integer, 

integer); 

Returns a tuple of three integer values entered from the 

keyboard function ReadInteger4: (integer, integer, integer, 
integer); 

Returns a tuple of four integer values entered from the 

keyboard function ReadInteger4(prompt: string): (integer, 
integer, integer, integer); 

Returns a tuple of four integer values entered from the 

keyboard function ReadLexem: string; 

Returns the following token function ReadLexem(f: Text): 

string; 

Returns the next token from the text file f procedure 

Readln(a,b,...); 

Enters the values a,b,... from the keyboard and moves to the 
next line 
procedure Readln(f: Text; a,b,...); 

Enters values a,b,... from the text file f and moves to the next 

line of the function ReadlnBiglnteger: BigInteger; 

Returns a value of type BigInteger entered from the keyboard 



 

and moves to the next line of input function ReadlnBoolean: 
boolean; 

Returns a boolean value entered from the keyboard and 

moves to the next line of input function ReadlnBoolean(prompt: 
string): boolean; 

Outputs an input prompt and returns a boolean value entered 
from the keyboard and moves to the next line of input 
function ReadlnBoolean(f: Text): boolean; 

Returns the boolean value entered from the text file f and skips 
to the next line 
function ReadlnChar: char; 

Returns a char value entered from the keyboard and moves to 

the next line of input function ReadlnChar(prompt: string): char; 

Outputs an input prompt and returns a char value entered from 

the keyboard and moves to the next line of input function 
ReadlnChar(f: Text): char; 

Returns the char value entered from the text file f and skips to 
the next line 
function ReadlnChar2: (char, char); 

Returns a tuple of two char values entered from the keyboard 

and moves to the next input line function ReadlnChar2(prompt: 
string): (char, char); 

Returns a tuple of two char values entered from the keyboard 

and moves on to the next line of input function ReadlnChar3: 
(char, char, char); 

Returns a tuple of three char values entered from the keyboard 

and moves on to the next line of input function 
ReadlnChar3(prompt: string): (char, char, char); 

Returns a tuple of three char values entered from the keyboard 

and moves on to the next line of input function ReadlnChar4: 
(char, char, char, char); 

Returns a tuple of four char values entered from the keyboard 

and moves on to the next line of input function 
ReadlnChar4(prompt: string): (char, char, char, char); 

Returns a tuple of four char values entered from the keyboard 



 

and skips to the next line of input 
function ReadlnInt64: int64; 

Returns int64 type value entered from the keyboard and moves 

to the next line of input function ReadlnInt64(prompt: string): 
int64; 

Outputs an input prompt and returns an int64 value entered 

from the keyboard and moves to the next line of input 
function ReadlnInt64(f: Text): int64; 

Returns an int64-type value entered from the text file f, and skips 

to the next line of the function Readlnlnteger: integer; 

Returns an integer value entered from the keyboard and moves 

to the next line of input function ReadlnInteger(prompt: string): 
integer; 

Outputs an input prompt and returns an integer value entered 

from the keyboard and moves to the next input line function 
ReadlnInteger(f: Text): integer; 

Returns an integer value entered from the text file f, and skips 

to the next line of the function ReadlnInteger2: (integer, integer); 

Returns a tuple of two integer values entered from the keyboard 

and moves on to the next line of input function 

ReadlnInteger2(prompt: string): (integer, integer); 

Returns a tuple of two integer values entered from the keyboard 

and moves to the next line of input function ReadlnInteger3: 

(integer, integer, integer); 

Returns a tuple of three integer values entered from the 

keyboard, and moves on to the next line of input function 

ReadlnInteger3(prompt: string): (integer, integer, integer); 

Returns a tuple of three integer values entered from the 

keyboard and moves on to the next line of input function 

ReadlnInteger4: (integer, integer, integer, integer); 

Returns a tuple of four integer values entered from the keyboard, 
and moves on to the next line of input 
function ReadlnInteger4(prompt: string): (integer, integer, 

integer, integer); 

Returns a tuple of four integer values entered from the 



 

keyboard and moves on to the next line of input function 
ReadlnReal: real; 

Returns a value of type real, entered from the keyboard, and 

moves to the next line of input function ReadlnReal(prompt: 
string): real; 

Outputs an input prompt and returns a value of type real, 

entered from the keyboard, and moves to the next input line 
function ReadlnReal(f: Text): real; 

Returns the value of type real entered from the text file f, and 

moves to the next line of the function ReadlnReal2: (real, real); 

Returns a tuple of two values of type real, entered from the 

keyboard, and moves to the next line of input function 
ReadlnReal2(prompt: string): (real, real); 

Returns a tuple of two values of type real, entered from the 

keyboard, and moves to the next line of input function ReadlnReal3: 
(real, real, real); 

Returns a tuple of three values of type real, entered from the 

keyboard, and moves to the next line of input function 
ReadlnReal3(prompt: string): (real, real, real); 

Returns a tuple of three values of type real, entered from the 

keyboard, and moves to the next line of input function ReadlnReal4: 
(real, real, real, real); 

Returns a tuple of four values of type real, entered from the 

keyboard, and moves to the next line of input function 
ReadlnReal4(prompt: string): (real, real, real, real); 

Returns a tuple of four values of type real, entered from the 
keyboard, and goes to the next line of input 
function ReadlnString: string; 

Returns a value of type string entered from the keyboard and 

moves to the next line of input function ReadlnString(prompt: 

string): string; 

Outputs an input prompt and returns a value of type string 

entered from the keyboard, and moves to the next input line function 
ReadlnString(f: Text): string; 

Returns the value of string type entered from the text file f, and 



 

moves to the next line of the function ReadlnString2: (string, 

string); 

Returns a tuple of two string values entered from the keyboard 

and moves to the next input line function ReadlnString2(prompt: 

string): (string, string); 

Returns a tuple of two string values entered from the keyboard 

and moves on to the next line of input function ReadlnString3: 

(string, string, string); 

Returns a tuple of three string values entered from the keyboard 

and moves on to the next line of input function 

ReadlnString3(prompt: string): (string, string, string); 

Returns a tuple of three string values entered from the keyboard 

and moves on to the next line of input function ReadlnString4: 

(string, string, string, string); 

Returns a tuple of four string values entered from the keyboard 

and moves on to the next line of input function 

ReadlnString4(prompt: string): (string, string, string, string); 

Returns a tuple of four string values entered from the keyboard, 
and skips to the next line of input 
function ReadReal: real; 

Returns a value of type real entered from the keyboard 

function ReadReal(prompt: string): real; 

Outputs the input prompt and returns a value of type real 

entered from the keyboard function ReadReal(f: Text): real; 

Returns a value of type real, entered from text file f 
function ReadReal2: (real, real); 

Returns a tuple of two values of type real entered from the 

keyboard function ReadReal2(prompt: string): (real, real); 

Returns a tuple of two values of type real, entered from the 

keyboard function ReadReal3: (real, real, real); 

Returns a tuple of three values of type real entered from the 

keyboard function ReadReal3(prompt: string): (real, real, real); 

Returns a tuple of three values of type real, entered from the 

keyboard function ReadReal4: (real, real, real, real); 

Returns a tuple of four values of type real entered from the 



 

keyboard function ReadReal4(prompt: string): (real, real, real, 
real); 

Returns a tuple of four values of type real, entered from the 

keyboard function ReadString: string; 

Returns a value of type string entered from the keyboard 

function ReadString(prompt: string): string; 

Outputs an input prompt and returns a value of type string 

entered from the keyboard function ReadString(f: Text): string; 

Returns value of type string entered from text file f function 
ReadString2: (string, string); 

Returns a tuple of two string values entered from the keyboard 
function ReadString2(prompt: string): (string, string); 

Returns a tuple of two string values entered from the keyboard 
function ReadString3: (string, string, string); 

Returns a tuple of three string values entered from the 

keyboard function ReadString3(prompt: string): (string, 
string, string); 

Returns a tuple of three string values entered from the 
keyboard 
function ReadString4: (string, string, string, string); 

Returns a tuple of four string values entered from the keyboard 
function ReadString4(prompt: string): (string, string, string, 

string); 

Returns a tuple of four string values entered from the keyboard 
function TryRead(var x: number): boolean; 

Enters the numeric value of x from the keyboard. Returns 
False if an error occurred while entering 
function TryRead(var x: number; message: string): boolean; 

Outputs an input prompt and enters the numeric value of x 
from the keyboard. Returns False if an error occurs 
function TryRead(var x: boolean; message: string := ''): 

boolean; 

Enters the boolean value x from the keyboard. Returns False if 
an error occurred while entering



 

Output subroutines  
function Deserialize(filename: string): object; 

Deserializes an object from a file 
procedure Print(a,b,...); 

Outputs values a,b,... on the screen, after each value prints a 
space 
procedure Print(f: Text; a,b,...); 

Outputs values a,b,... to the text file f, after each value prints a 
space 
procedure Println(a,b,...); 

Outputs values a,b,... on the screen, after each value prints a 
space and jumps to a new line 
procedure Println(f: Text; a,b,...); 

Outputs values a,b,... to the text file f, after each value prints a 
space and jumps to a new line 
procedure Serialize(filename: string; obj: object); 

Serializes the object to a file (the object must have the 
[Serializable] attribute) 
procedure Write(a,b,...); 

Outputs the values a,b,... on the screen 
procedure Write(f: file; a,b,...); 

Outputs values a,b,... into file f procedure 
WriteFormat(formatstr: string; params args: array of objects); 

Outputs args values according to formatstr 
procedure WriteFormat(f: Text; formatstr: string; params args: 

array of objects); 

Outputs args values to the text file f according to the formatstr 
procedure Writeln(a,b,...); 

Outputs the values a,b,... onto the screen and jumps to a new 
line 
procedure Writeln(f: Text; a,b,...); 

Outputs values a,b,... to the text file f and moves to a new line 
procedure WritelnFormat(formatstr: string; params args: array 

of objects); 

Outputs args values according to the formatstr format string 

and jumps to a new string procedure WritelnFormat(f: Text; 
formatstr: string; params args: array of objects); 



 

Outputs args values to the text file f according to the formatstr 
format string and jumps to a new line



 

Mathematical subroutines  

function Abs(x: number): number; Returns the modulus of number 

x function ArcCos(x: real): real; 

Returns the angle in radians, cosine of which is equal to x, -
1<=x<=1 
function ArcSin(x: real): real; 

Returns the angle in radians, the sine of which is equal to x, -

1<=x<=1 function ArcTan(x: real): real; 

Returns the angle in radians, the tangent of which is equal to x 
function Ceil(x: real): integer; 

Returns the smallest integer >= x 
function Cos(x: real): real; 

Returns the cosine of the angle x measured in radians 
function Cosh(x: real): real; 

Returns the hyperbolic cosine of angle x measured in radians 
function DegToRad(x: real): real; 

Converts degrees to radians 
function Exp(x: real): real; 

Returns the exponent of the number x 
function Floor(x: real): integer; 

Returns the largest integer <= x 
function Frac(x: real): real; 

Returns the fractional part of the number x 
function Int(x: real): real; 

Returns the integer part of the number x 
function Ln(x: real): real; 

Returns the natural logarithm of the number x 
function Log(x: real): real; 

Returns the natural logarithm of the number x 
function Log10(x: real): real; 

Returns the decimal logarithm of the number x 
function Log2(x: real): real; 

Returns the logarithm of the number x on base 2 
function LogN(base, x: real): real; 

Returns the logarithm of the number x on base base 
function Max(a: number, b: number): number; 

Returns the maximum of the numbers a,b 
function Max(a,b,...: T): T; 



 

Returns the maximum of a,b,... 
function Min(a: number, b: number): number; 

Returns the minimum of the numbers a,b 
function Min(a,b,...: T): T; 

Returns the minimum of a,b,... 
function Odd(i: integer): boolean; 

Returns True if i is odd, and False otherwise 
function Power(x, y: real): real; 

Returns x to the power of y 
function Power(x: real; n: integer): real; 

Returns x to the integer power of n 
function Power(x: BigInteger; y: integer): BigInteger; 

Returns x to the power of y 
function RadToDeg(x: real): real; 

Converts radians to degrees 
function Random(maxValue: integer): integer; 

Returns a random integer in the range 0 to maxValue-1 
function Random(maxValue: real): real; 

Returns a random real in the range [0,maxValue) 
function Random(a, b: integer): integer; 

Returns a random integer in the range a to b 
function Random(a, b: real): real; 

Returns a random real in the range [a,b] function Random: 

real; 

Returns a random real in the range [0..1] function 

Random2(maxValue: integer): (integer, integer); 

Returns a tuple of two random integers between 0 and 

maxValue-1 function Random2(maxValue: real): (real, real); 

Returns a tuple of two random realities in the range 

[0,maxValue) function Random2(a, b: integer): (integer, 
integer); 

Returns a tuple of two random integers in the range a to b 
function Random2(a, b: real): (real, real); 

Returns a tuple of two random realities in the range [a,b] 
function Random2: (real, real); 

Returns a tuple of two random realities in the range [0..1] 
function Random3(maxValue: integer): (integer, integer, 

integer); 

Returns a tuple of three random integers between 0 and 



 

maxValue-1 function Random3(maxValue: real): (real, real, 
real); 

Returns a tuple of three random realities in the range 
[0,maxValue) 
function Random3(a, b: integer): (integer, integer, integer); 

Returns a tuple of three random integers in the range a to b 
function Random3(a, b: real): (real, real, real); 

Returns a tuple of three random realities in the range [a,b] 
function Random3: (real, real, real); 

Returns a tuple of three random realities in the range [0..1) 
procedure Randomize(seed: integer); 

Initializes the pseudorandom number sensor using the seed 
value. The same seed generates the same pseudorandom 
sequences 
procedure Randomize; 

Initializes a pseudorandom number sensor 
function Round(x: real): integer; 

Returns x rounded to the nearest integer. If the real is in the 
middle between two integers, it is rounded to the nearest even 
number (bank rounding): Round(2.5)=2, Round(3.5)=4 
function Round(x: real; digits: integer): real; 

Returns x rounded to the nearest real with digits after the 
decimal point 
function RoundBigInteger(x: real): BigInteger; 

Returns x rounded to the nearest long integer 
function Sign(x: number): integer; 

Returns -1,0 or +1 depending on the sign of number x 
function Sin(x: real): real; 

Returns the sine of the angle x measured in radians 
function Sinh(x: real): real; 

Returns the hyperbolic sine of the angle x measured in radians 
function Sqr(x: number): number; 

Returns the square of the number x 
function Sqrt(x: real): real; 

Returns the square root of the number x 
function Tan(x: real): real; 

Returns the tangent of the angle x measured in radians 
function Tanh(x: real): real; 



 

Returns the hyperbolic tangent of angle x measured in radians 
function Trunc(x: real): integer; 

Returns the integer part of the real number x 
function TruncBigInteger(x: real): BigInteger; 

Returns the integer part of the real number x as 

long whole



 

System subroutines  

procedure Assert(cond: boolean); Outputs in a special window the 

subroutine call stack if the condition is not met procedure 
Assert(cond: boolean; message: string); 

Outputs in a special window diagnostic message and 

subroutine call stack if the condition is not fulfilled function 
ChangeFileNameExtension(name, newext: string): string; 

Changes the extension of the file named name to newext 

procedure ChDir(s: string); 

Changes the current directory 
function CreateDir(s: string): boolean; 

Creates directory. Returns True if the directory was 
successfully created 
function DeleteFile(s: string): boolean; 

Deletes the file. If the file cannot be deleted, it returns False. 
function DiskFree(diskname: string): int64; 

Returns the free space in bytes on the disk named diskname 
function DiskFree(disk: integer): int64; 

Returns the free space in bytes on disk. disk=0 is the current 
disk, disk=1 is disk A: , disk=2 - disk B:, etc. 
function DiskSize(diskname: string): int64; 

Returns the size in bytes on the disk named diskname 

function DiskSize(disk: integer): int64; 

Returns the size in bytes of the disk. disk=0 - current disk, 
disk=1 - disk A: , disk=2 - disk B:, etc. 
procedure Dispose<T>(var p: LT); 

Frees up the dynamic memory pointed to by p function 
EnumerateAllDirectories(path: string): sequence of string; 

Returns a sequence of directory names for a given path, 

including subdirectories function EnumerateAllFiles(path: string; 
searchPattern: string := '*.*'): sequence of string; 

Returns a sequence of file names in the given path, matching 

the search pattern, including subdirectories function 
EnumerateDirectories(path: string): sequence of string; 

Returns the sequence of directory names for the given path 
function EnumerateFiles(path: string; searchPattern: string := 



 

'*.*'): sequence of string; 

Returns a sequence of file names on the specified path, 
matching the search pattern 
procedure Exec(filename: string); 

Starts a program or document named filename procedure 

Exec(filename: string; args: string); 

Launches a program or document with filename and command 
line parameters args 
procedure Executefilename: string); 

Starts a program or document named filename procedure 

Executefilename: string; args: string); 

Launches a program or document with filename and command 
line parameters args 
function FileExists(name: string): boolean; 

Returns True if the file named name exists 
function GetCurrentDir: string; 

Returns the current directory 
function GetDir: string; 

Returns current directory function GetEXEFileName: string; 

Returns the name of the running .exe file 
procedure Halt(exitCode: integer); 

Terminates the program, returning the error code exitCode 
procedure Halt; 

Completes the program 
function Milliseconds: integer; 

Returns the number of milliseconds since the program started 
function MillisecondsDelta: integer; 

Returns the number of milliseconds since the last Milliseconds 
or MillisecondsDelta call or program start 
procedure MkDir(s: string); 

Creates directory 
procedure New<T>(var p: LT); 

Allocates dynamic memory of sizeof(T) and returns a pointer to 
it in the p variable. The type T must be of size 
function ParamCount: integer; 

Returns the number of command line parameters 
function ParamStr(i: integer): string; 



 

Returns the i-th command line parameter 
function PascalABCVersion: string; 

Returns the version of PascalABC.NET 
function PointerToString(p: pointer): string; 

Converts the pointer to a string representation 
function RemoveDir(s: string): boolean; 

Deletes a directory. Returns True if the directory was 
successfully deleted 
function RenameFile(name, newname: string): boolean; 

Renames file name, giving it newname. Returns True if the file 
was successfully renamed 
procedure RmDir(s: string); 

Deletes directory 
function SetCurrentDir(s: string): boolean; 

Sets the current directory. Returns True if the directory was 
successfully deleted 
procedure Sleep(ms: integer); 

Pauses for ms milliseconds



 

Common subroutines for working with files  

procedure Assign(f: file; name: string); Assigns 

file variable with a file on disk 
procedure AssignFile(f: file; name: string); 

Associates a file variable with a file on disk 
procedure Close(f: file); 

Closes the file 
procedure CloseFile(f: file); 

Closes the file 
function Eof(f: file): boolean; 

Returns True if the end of the file is reached 
procedure Erase(f: file); 

Deletes the file associated with the file variable 
procedure Rename(f: file; newname: string); 

Renames the file associated with the file 
variable, giving it the name newname.



 

Subroutines for working with text files  

procedure Append(f: Text); Opens the TEXT file for addition in 

Windows encoding 
procedure Append(f: Text; en: Encoding); 

Opens a text file for addition in the specified encoding 
procedure Append(f: Text; name: string); 

Associates the file variable f with the file name and opens the 
text file in Windows encoding 
procedure Append(f: Text; name: string; en: Encoding); 

Associates the file variable f with the file name and opens the 
text file for addition in the specified encoding 
function Eoln(f: Text): boolean; 

Returns True if the file reaches the end of the line 
procedure Flush(f: Text); 

Writes the contents of the file buffer to disk 
function OpenAppend(fname: string): Text; 

Returns a text file named fname opened on a Windows 
encoding addition 
function OpenAppend(fname: string; en: Encoding): Text; 

Returns a text file named fname, opened on the addition in the 
specified encoding 
function OpenRead(fname: string): Text; 

Returns a text file named fname, open for reading in Windows 
encoding 
function OpenRead(fname: string; en: Encoding): Text; 

Returns a text file named fname, opened for reading in the 
specified encoding 
function OpenWrite(fname: string): Text; 

Returns a text file named fname, open for writing in Windows 
encoding 
function OpenWrite(fname: string; en: Encoding): Text; 

Returns a text file named fname, opened for writing in the 
specified encoding 
function ReadAllLines(path: string): array of string; 

Opens file, reads lines from it in Windows encoding as an array 

of lines, then closes file function ReadAllLines(path: string; en: 
Encoding): array of string; 

Opens file, reads strings from it in specified encoding as array 

of strings, then closes file function ReadAllText(path: string): 



 

string; 

Opens a file, reads its contents in Windows encoding as a string, 

then closes the file with function ReadAllText(path: string; en: 

Encoding): string; 

Opens the file, reads its contents in the specified encoding as a 
string, and then closes the file 
function ReadLines(path: string): sequence of string; 

Opens file, reads lines from it in Windows encoding and closes 

file. At each moment only the current line is stored in memory 
function ReadLines(path: string; en: Encoding): sequence of 

string; 

Opens file, reads lines from it in specified encoding and closes 

file. At each moment only the current line procedure Reset(f: Text) 

is stored in memory; 

Opens a text file for reading in Windows encoding procedure 

Reset(f: Text; en: Encoding); 

Opens a text file for reading in the specified encoding procedure 
Reset(f: Text; name: string); 

Associates the file variable f with the file name and opens the 
text file for reading in Windows encoding 
procedure Reset(f: Text; name: string; en: Encoding); 

Associates the file variable f with the file name and opens the 
text file for reading in the specified encoding 
procedure Rewrite(f: Text); 

Opens a text file for writing in Windows encoding- If the file 
existed - it is zeroed, if not - it is created empty 
procedure Rewrite(f: Text; en: Encoding); 

Opens a text file for writing in the specified encoding. if the file 
existed - it is reset, if not - an empty one is created 
procedure Rewrite(f: Text; name: string); 

Associates a file variable with file name and opens text file f for 
writing in Windows encoding-if the file existed, it is zeroed, if not, it 
is created empty 
procedure Rewrite(f: Text; name: string; en: Encoding); 

Associates the file variable f with the file name and opens the 
text file f for writing in the specified encoding.If the file existed - it is 
zeroed, if not - it is created empty 



 

function SeekEof(f: Text): boolean; 

Skips whitespace characters, then returns True if the end of 
the file is reached 
function SeekEoln(f: Text): boolean; 

Skips whitespace characters, then returns True if the file 
reaches the end of the line 
procedure WriteAllLines(path: string; ss: array of string); 

Creates a new file, writes to it the strings from the array in 
Windows encoding, and then closes the file 
procedure WriteAllLines(path: string; ss: array of string; en: 

Encoding); 

Creates a new file, writes to it the strings from the array in the 
specified encoding, and then closes the file 
procedure WriteAllText(path: string; s: string); 

Creates a new file, writes a line in it in Windows encoding, and 
then closes the file 
procedure WriteAllText(path: string; s: string; en: Encoding); 

Creates a new file, writes a line to it in 
the specified encoding, and then closes the file 
procedure WriteLines(path: string; ss: sequence of string); 

Creates a new file, writes to it the lines from the sequence in 
Windows encoding, and then closes the file 
procedure WriteLines(path: string; ss: sequence of string; en: 

Encoding); 

Creates a new file, writes into it the lines from the sequence in 
the specified encoding, and then closes the file



 

Subroutines for working with typed and untyped 

files function CreateBinary(fname: string): file; Creates or 

nulls an untyped file and returns a value to initialize the file variable 
function CreateBinary(fname: string; en: Encoding): file; 

Creates or nulls a zip file in the specified encoding and returns 
a value to initialize the file variable 
function CreateFile<T>(fname: string): file of T; 

Creates or nulls typed file and returns value to initialize file 

variable function CreateFile<T>(fname: string; en: Encoding): 
file of T; 

Creates or nulls typed file in specified encoding and returns 

value to initialize file variable function CreateFileInteger(fname: 
string): file of integer; 

Creates or nulls a typed integer file and returns a value to 
initialize the file variable 
function CreateFileReal(fname: string): file of real; 

Creates or nulls a typed real file and returns a value to initialize 
the file variable 
function OpenBinary(fname: string): file; 

Opens a bespoke file and returns a value to initialize the file 
variable 
function OpenBinary(fname: string; en: Encoding): file; 

Opens a zipless file in a given encoding and returns the value 
to initialize the file variable 
function OpenFile<T>(fname: string): file of T; 

Opens a typed file and returns the value 

to initialize the file variable 
function OpenFile<T>(fname: string; en: Encoding): file of T; 

Opens a typed file in a given encoding and returns a value to 
initialize the file variable 
function OpenFileInteger(fname: string): file of integer; 

Opens a typed integer file and returns a value to initialize the 
file variable 
function OpenFileReal(fname: string): file of real; 

Opens a typed real file and returns a value to initialize the file 



 

variable 
procedure WriteElements<T>(fname: string; ss: sequence of T); 

Opens a typed file, writes a sequence of ss elements to it and 
closes it



 

Subroutines for working with binary files  

function FilePos(f: binary): int64; Returns the current position 

of the file pointer in the binary file 
function FileSize(f: binary file): int64; 

Returns the number of elements in the binary file 
procedure Reset(f: binary file); 

Opens a binary file for reading and writing.A binary file is either 
a typed file of T or a typeless file of file 
procedure Reset(f: binary file; name: string); 

Associates the file variable f with the file name on disk and 
opens a binary file for reading and writing.A binary file is either a 
typed file of T or a typeless file file 
procedure Reset(f: binary; en: Encoding); 

Opens a binary file for reading and writing in a given 
encoding.A binary file is either a typed file of T or a typeless file of 
file 
procedure Reset(f: binary; name: string; en: Encoding); 

Associates the file variable f with the file name on disk and 
opens a binary file for reading and writing in a given encoding.A 
binary file is either a typed file of T or a typeless file of file 
procedure Rewrite(f: binary file); 

Opens a binary file for reading and writing, while zeroing its 
contents. If the file existed, it is zeroed.A binary file is either a typed 
file of T or a typeless file of file 
procedure Rewrite(f: binary file; name: string); 

Associates the file variable f with the name file on disk and 
opens the binary file for reading and writing, while zeroing its 
contents.A binary file is either a typed file of T or an untyped file of 
file 
procedure Rewrite(f: binary; en: Encoding); 

Opens a binary file for reading and writing in a given encoding, 

while zeroing its contents. If the file existed, it is zeroed.A binary file 

is either a typed file of T or a type-free file file procedure Rewrite(f: 
binary file; name: string; en: Encoding); 

Associates the file variable f with the name file on disk and 
opens the binary file for reading and writing in the specified 
encoding, while zeroing its contents.A binary file is either a typed file 
of T or a typeless file file of file 



 

procedure Seek(f: binary; n: int64); 

Sets the current position of the file pointer in the binary file to 
the element with the given number 
procedure Truncate(f: binary file); 

Truncates a binary file by discarding all elements from the file 
pointer position.A binary file is either a typed file of T or a typeless 
file of file



 

Subroutines for working with file names  
function ExpandFileName(fname: string): string; 

Returns the full name of the file fname 
function ExtractFileDir(fname: string): string; 

Selects the drive name and path from the full file name fname 

function ExtractFileDrive(fname: string): string; 

Extracts the path from the full file name fname function 

ExtractFileExt(fname: string): string; 

Extracts extension from the full file name fname function 

ExtractFileName(fname: string): string; 

Extracts file name from the full file name fname function 

ExtractFilePath(fname: string): string; 

Selects the path from the full file name fname



 

Subroutines for working with symbols  

function Chr(a: word): char; Converts code to Unicode character 
function ChrAnsi(a: byte): char; 

Converts the code to a Windows encoded character 
function ChrUnicode(a: word): char; 

Converts the code into a Unicode character 
procedure Dec(var c: char); 

Reduces the c character code by 1 
procedure Dec(var c: char; n: integer); 

Reduces the c character code by n 
procedure Inc(var c: char); 

Increases the c character code by 1 
procedure Inc(var c: char; n: integer); 

Increases the c character code by n 
function LowCase(ch: char): char; 

Converts character to lower case 
function LowerCase(ch: char): char; 

Converts character to lower case 
function Ord(a: char): word; 

Converts the character into Unicode code 
function OrdAnsi(a: char): byte; 

Converts character to Windows encoding 
function OrdUnicode(a: char): word; 

Converts the character into Unicode code 
function Pred(x: char): char; 

Returns the preceding x character 
function Succ(x: char): char; 

Returns the next character after x 
function UpCase(ch: char): char; 

Converts character to uppercase 
function UpperCase(ch: char): char; 

Converts character to uppercase 

Subroutines for working with strings  

function CompareStr(s1, s2: string): integer; Compares strings. 

Returns < 0 if s1<s2, > 0 if s1>s2 and = 0 if s1=s2 



 

function Concat(s1,s2,...): string; 

Returns the string that is the result of merging the strings 
s1,s2,... 
function Concat(s1, s2: string): string; 

Returns the string that is the result of merging s1 and s2 
function Copy(s: string; index, count: integer): string; 

Returns a substring of string s of length count from position 
index 
procedure Delete(var s: string; index, count: integer); 

Removes from the string s count of characters from the index 
position 
function FloatToStr(a: real): string; 

Converts a real number to a string representation function 
Format(formatstring: string; params pars: array of objects): 

string; 

Returns a formatted string constructed from the format string 

and the list of formatted parameters procedure Insert(source: 
string; var s: string; index: integer); 

Inserts a substring of source into the string s from the index 
position 
function IntToStr(a: integer): string; 

Converts an integer to a string representation 
function IntToStr(a: int64): string; 

Converts an integer to a string representation 
function LastPos(subs, s: string): integer; 

Returns the position of the last occurrence of the substring 
subs in the string s. If not found, returns 0 
function LastPos(subs, s: string; from: integer): integer; 

Returns the position of the last occurrence of the substring 
subs in the string s starting from the from position. If not found, it 
returns 0 
function LeftStr(s: string; count: integer): string; 

Returns the first count of characters of the string s 
function Length(s: string): integer; 

Returns the string length 
function LowerCase(s: string): string; 

Returns a lowercase string 
function Pos(subs, s: string; from: integer := 1): integer; 



 

Returns position of substring subs in string s. If not found, it 
returns 0 
function PosEx(subs, s: string; from: integer := 1): integer; 

Returns position of substring subs in string s starting from 

position from. If not found, returns 0 function 
ReadIntegerFromString(s: string; var from: integer): integer; 

Reads an integer from a string starting from and sets from 

behind the read value function ReadRealFromString(s: string; var 
from: integer): real; 

Reads the real from the string starting from and sets from after 

the read value function ReadWordFromString(s: string; var from: 
integer): string; 

Reads from a string a sequence of characters up to the space 
character starting from the from position and sets from after the read 
value 
function ReverseString(s: string): string; 

Returns the inverted string 
function ReverseString(s: string; index,length: integer): 

string; 

Returns an inverted string in length range starting from index 
function RightStr(s: string; count: integer): string; 

Returns the last count of characters of the string s procedure 

SetLength(var s: string; n: integer); 

Sets the length of string s to n procedure Str(i: integer; var 

s: string); 

Converts an integer value i to a string representation and writes 

the result to s procedure Str(r: real; var s: string); 

Converts a real value of r to a string representation and writes 

the result to s procedure Str(r: single; var s: string); 

Converts a real value of r to a string representation and writes 

the result to s function StringIsEmpty(s: string; var from: 
integer): boolean; 

Returns True if the end of the string is reached or the string 

contains only whitespace characters, and False otherwise function 
StringOfChar(ch: char; count: integer): string; 



 

Returns a string consisting of count characters ch function 

StrToFloat(s: string): real; 

Converts string representation of a real number to a numeric 

value function StrToInt(s: string): integer; 

Converts string representation of an integer to a numeric value 
function StrToInt64(s: string): int64; 

Converts a string representation of an integer to a numeric 

value function StrToReal(s: string): real; 

Converts the string representation of a real number to a 

numeric value function Trim(s: string): string; 

Returns a string with deleted leading and trailing spaces 
function TrimLeft(s: string): string; 

Returns a string with the initial spaces removed function 

TrimRight(s: string): string; 

Returns a string with deleted end spaces 
function TryReadIntegerFromString(s: string; var from: integer; 

var res: integer): boolean; 

Reads an integer from a string starting from and sets from 

behind the read value.Returns True if the read was successful and 

False otherwise function TryReadRealFromString(s: string; var 
from: integer; var res: real): boolean; 

Reads the real from the string starting from and sets from 
behind the read value.Returns True if the read is successful and 
False otherwise 
function TryStrToFloat(s: string; var value: real): boolean; 

Converts the string representation s of a real number to a 
numeric value and writes it to value.If the conversion fails it returns 
False 
function TryStrToFloat(s: string; var value: single): boolean; 

Converts the string representation s of a real number to a 
numeric value and writes it to value.If the conversion fails it returns 
False 
function TryStrToInt(s: string; var value: integer): boolean; 

Converts the string representation s of an integer to a numeric 
value and writes it to value.If the conversion fails it returns False 



 

function TryStrToInt64(s: string; var value: int64): boolean; 

Converts the string representation s of an integer to a numeric 
value and writes it to value.If the conversion fails it returns False 
function TryStrToReal(s: string; var value: real): boolean; 

Converts the string representation s of a real number to a 

numeric value and writes it to value.If the conversion fails it returns 

False function TryStrToSingle(s: string; var value: single): 
boolean; 

Converts the string representation s of a real number to a 
numeric value and writes it to value.If the conversion fails it returns 
False 
function UpperCase(s: string): string; 

Returns an uppercase string 
procedure Val(s: string; var value: number; var err: integer); 

Converts string representation s of an integer or real number to 
a numeric value and writes it to the variable value-if the conversion is 
successful, then err=0, otherwise err>0



 

Subroutines for working with dynamic arrays  
function ArrEqual<T>(a, b: array of T): boolean; 

Returns whether the arrays match or not 
function Copy(a: array of T): array of T; 

Creates a copy of a dynamic array 
function High(a: array of T): integer; 

Returns the upper bound of the dynamic array 
function Length(a: array of T): integer; 

Returns the length of the dynamic array 
function Length(a: array of T; dim: integer): integer; 

Returns the length of a dynamic array by dim dimension 
function Low(a: array of T): integer; 

Returns 0 
function MatrEqual<T>(a, b: array [,] of T): boolean; 

Compares matrices for equality 
function NextPermutation(a: array of integer): boolean; 

Returns the next permutation in the array 
procedure Reverse<T>(a: array of T); 

Reverses the order of elements in a dynamic array 
procedure Reverse<T>(a: array of T; index, count: integer); 

Reverses the order of the elements in the range of the 
dynamic array of length count, starting from the index 
procedure Reverse<T>(a: List<T>); 

Reverses the order of the items in the list 
procedure Reverse<T>(a: List<T>; index, count: integer); 

Reverses the order of the elements in the range of the list of 
length count, starting from the index 
procedure Reverse(var s: string); 

Reverse procedure Reverse(var s: string; index, count: 

integer); 

Reverses the order of the characters in the count part of the 
string length, starting from the index 
procedure SetLength(var a: array of T; n: integer); 

Sets the length of a one-dimensional dynamic array. 
Old content is retained 
procedure SetLength(var a: array [,...,] of T; n1,n2,...: 



 

integer); 

Sets the size of an n-dimensional dynamic array. The old 
content is saved 
procedure Shuffle<T>(a: array of T); 

Shuffles the dynamic array randomly 
procedure Shuffle<T>(l: List<T>); 

Shuffles the list at random 
procedure Sort<T>(a: array of T); 

Sorts a dynamic array in ascending order procedure 

Sort<T>(a: array of T; cmp: (T,T)->integer); 

Sorts a dynamic array according to a sorting criterion specified 
by the cmp comparison function 
procedure Sort<T>(a: array of T; less: (T,T)->boolean); 

Sorts a dynamic array according to a sorting criterion specified 
by the comparison function less 
procedure Sort<T>(l: List<T>); 

Sorts the list in ascending order 
procedure Sort<T>(l: List<T>; cmp: (T,T)->integer); 

Sorts the list according to the sorting criterion specified by the 
cmp comparison function 
procedure Sort<T>(l: List<T>; less: (T,T)->boolean); 

Sorts the list according to the sorting criterion specified by the 
less comparison function 
procedure SortDescending<T>(a: array of T); 

Sorts a dynamic array in descending order 
procedure SortDescending<T>(l: List<T>); 

Sorts the list in descending order  



 

Subroutines for working with standard sets  
procedure Exclude(var s: set of T; 

element from the set s 
procedure Include(var s: set of T; 

element: T); 

Adds an element to the set s

element: T); Deletes 



 

Subprograms for working with complex 
numbers  

function Abs(c: Complex): real; Returns the modulus of a 

complex number 
function Conjugate(c: Complex): Complex; 

Returns the complex conjugate number 
function Cos(c: Complex): Complex; 

Returns the cosine of a complex number 
function Cplx(re, im: real): Complex; 

Constructs a complex number with a real part re and an 
imaginary part im 
function CplxFromPolar(magnitude, phase: real): Complex; 

Constructs a complex number using polar coordinates 
function Exp(c: Complex): Complex; 

Returns the exponent of a complex number 
function Ln(c: Complex): Complex; 

Returns the natural logarithm of a complex number function 

Log(c: Complex): Complex; 

Returns the natural logarithm of a complex number function 

Log10(c: Complex): Complex; 

Returns the decimal logarithm of a complex number 
function Power(c, power: Complex): Complex; 

Returns the degree of a complex number 
function Sin(c: Complex): Complex; 

Returns the sine of a complex number 
function Sqrt(c: Complex): Complex; 

Returns the square root of a complex number



 

Subroutines for sequence generation  
function PartitionPoints(a, b: real; n: integer): sequence of 

real; Returns a sequence of real points to divide the segment [a,b] 

into n equal parts 
function Range(a, b: integer): sequence of integer; 

Returns a sequence of integers from a to b function Range(a, 

b, step: integer): sequence of integer; 

Returns a sequence of integers from a to b with step 
function Range(a, b: BigInteger): sequence of BigInteger; 

Returns a sequence of long integers from a to b function 
Range(a, b, step: BigInteger): sequence of BigInteger; 

Returns a sequence of long integers from a to b with step 
function Range(c1, c2: char): sequence of char; 

Returns a sequence of characters from c1 to c2 
function Range(c1, c2: char; step: integer): sequence of char; 

Returns a sequence of characters from c1 to c2 in increments 
of step 
function ReadSeqInteger(n: integer): sequence of integer; 

Returns a sequence of n integers entered from the keyboard 
function ReadSeqInteger(prompt: string; n: integer): sequence 

of integer; 

Outputs an input prompt and returns a sequence of n integers 

entered from the keyboard function ReadSeqIntegerWhile(cond: 
integer->boolean): sequence of integer; 

Returns a sequence of integers entered from the keyboard as 

long as a certain condition is met. function 
ReadSeqIntegerWhile(prompt: string; cond: integer- >boolean): 

sequence of integer; 

Outputs the input prompt and returns 
a sequence of integers entered from the keyboard as long as a 
certain condition is met 
function ReadSeqReal(n: integer): sequence of real; 

Returns a sequence of n real entered from the keyboard 
function ReadSeqReal(prompt: string; n: integer): sequence of 

real; 

Outputs an input prompt and returns a sequence of n real ones 

entered from the keyboard function ReadSeqRealWhile(cond: real-



 

>boolean): sequence of real; 

Returns a sequence of real, typed from the keyboard as long as 

a certain condition is met. function ReadSeqRealWhile(prompt: 

string; cond: real- >boolean): sequence of real; 

Outputs an input prompt and returns a sequence of real, entered 

from the keyboard as long as a certain condition is met. function 
ReadSeqString(n: integer): sequence of string; 

Returns a sequence of n strings entered from the keyboard 
function ReadSeqString(prompt: string; n: integer): sequence of 

string; 

Outputs an input prompt and returns a sequence of n strings 

entered from the keyboard function ReadSeqStringWhile(cond: 

string->boolean): sequence of strings; 

Returns a sequence of strings entered from the keyboard as long 

as the specified condition is met. function 

ReadSeqStringWhile(prompt: string; cond: string- >boolean): 

sequence of strings; 

Outputs an input prompt and returns a sequence of strings 

entered from the keyboard as long as a certain condition is met. 
function Seq<T>(params a: array of T): sequence of T; 

Returns the sequence of specified elements 
function SeqFill<T>(count: integer; x: T): sequence of T; 

Returns a sequence of x elements count function 
SeqGen<T>(count: integer; f: integer->T): sequence of T; 

Returns a sequence of count elements filled with values f(i) 
function SeqGen<T>(count: integer; f: integer->T; from: 

integer): sequence of T; 

Returns a sequence of count elements filled with values f(i), 

starting with i=from function SeqGen<T>(count: integer; first: T; 
next: T->T): sequence of T; 

Returns a sequence of count elements, starting with first, with 

the function next moving from the previous to the next function 
SeqGen<T>(count: integer; first, second: T; next: (T,T) ->T): 

sequence of T; 

Returns a sequence of count elements, starting with first and 

second, with the next function moving from the previous two to the 

next function SeqRandom(n: integer := 10; a: integer := 0; b: 



 

integer := 100): sequence of integer; 

Returns a sequence of n random integer elements function 
SeqRandomInteger(n: integer := 10; a: integer := 0; b: integer 

:= 100): sequence of integer; 

Returns a sequence of n random integer elements 
function SeqRandomReal(n: integer := 10; a: real := 0; b: real 

:= 10): sequence of real; 

Returns a sequence of n random real elements 
function SeqWhile<T>(first: T; next: T->T; pred: T->boolean): 

sequence of T; 

Returns the sequence of elements with the initial value first, the 
function of the next transition from the previous to 
to the next one and a condition for the continuation of the sequence 
function SeqWhile<T>(first, second: T; next: (T,T) ->T; pred: 

T->boolean): sequence of T; 

Returns a sequence of elements starting with first and second, 
with a function next to go from the previous two to the next and a 
condition pred to continue the sequence



 

Subroutines for creating dynamic arrays  
function Arr<T>(params a: array of T): array of T; 

Returns an array filled with the specified values of the function 

Arr<T>(a: sequence of T): array of T; 

Returns an array filled with values from the sequence 
function Arr(a: IntRange): array of integer; 

Returns an array filled with a range of values 
function Arr(a: CharRange): array of char; 

Returns an array filled with a range of values 
function ArrFill<T>(count: integer; x: T): array of T; 

Returns an array of count elements x function 
ArrGen<T>(count: integer; gen: integer->T): array of T; 

Returns an array of count elements filled with gen(i) values 
function ArrGen<T>(count: integer; gen: integer->T; from: 

integer): array of T; 

Returns an array of count elements filled with gen(i) values, 

starting with i=from function ArrGen<T>(count: integer; first: T; 
next: T->T): array of T; 

Returns an array of count elements starting with first, with the 

function next moving from the previous to the next function 
ArrGen<T>(count: integer; first, second: T; next: (T,T) ->T): 

array of T; 

Returns an array of count elements beginning with first and 

second, with the next function moving from the previous two to the 

next function ArrRandom(n: integer := 10; a: integer := 0; b: 
integer := 100): array of integer; 

Returns an array of size n filled with random integer values 
function ArrRandomInteger(n: integer := 10; a: integer := 0; 

b: integer := 100): array of integer; 

Returns an array of size n filled with random integer values 
function ArrRandomReal(n: integer := 10; a: real := 0; b: real 

:= 10): array of real; 

Returns an array of size n filled with random real values 
function ReadArrInt64(n: integer): array of int64; 

Returns an array of n int64 integers entered from the keyboard 



 

function ReadArrInteger(n: integer): array of integer; 

Returns an array of n integers entered from the keyboard 
function ReadArrInteger(prompt: string; n: integer): array of 

integer; 

Outputs an input prompt and returns an array of n integers 

entered from the keyboard function ReadArrReal(n: integer): 
array of real; 

Returns an array of n real entered from the keyboard function 
ReadArrReal(prompt: string; n: integer): array of real; 

Outputs an input prompt and returns an array of n real ones 

entered from the keyboard function ReadArrString(n: integer): 
array of string; 

Returns an array of n strings entered from the keyboard 
function ReadArrString(prompt: string; n: integer): array of 

string; 

Outputs an input prompt and returns an array of n strings 
entered from the keyboard



 

Subroutines for creating two-dimensional 
dynamic arrays  
function Matr<T>(m,n: integer; params data: array of T): array 

[,] of t; Returns a two-dimensional array of size m x n, filled with 

the specified values on lines function Matr<T>(params aa: array of 
array of T): array [,] of T; 

Returns a two-dimensional array filled with values from one-

dimensional arrays function MatrByCol<T>(a: array of array of T): 
array [,] of T; 

Generates a two-dimensional array from an array of arrays of 

columns function MatrByCol<T>(a: sequence of array of T): array 
[,] of T; 

Generates a two-dimensional array from a sequence of arrays 

of columns function MatrByCol<T>(a: sequence of sequence of T): 
array [,] of T; 

Generates a two-dimensional array from a sequence of 

column sequences function MatrByCol<T>(m,n: integer; a: 
sequence of T): array [,] of T; 

Generates a two-dimensional array by columns from the 
sequence 
function MatrByRow<T>(a: array of array of T): array [,] of T; 

Generates a two-dimensional array from an array of arrays of 

strings function MatrByRow<T>(a: sequence of array of T): array 
[,] of T; 

Generates a two-dimensional array from a sequence of arrays 

of rows function MatrByRow<T>(a: sequence of sequence of T): 
array [,] of T; 

Generates a two-dimensional array from a sequence of rows 
function MatrByRow<T>(m,n: integer; a: sequence of T): array 

[,] of T; 

Generates a two-dimensional array by strings from the 
sequence 
function MatrFill<T>(m, n: integer; x: T): array [,] of T; 

Returns a two-dimensional array of size m x n, filled with 



 

elements of x 
function MatrGen<T>(m, n: integer; gen: (integer,integer)->T): 

array [,] of T; 

Returns a two-dimensional array of size m x n, filled with 
elements gen(i,j) 
function MatrRandom(m: integer := 5; n: integer := 5; a: 

integer := 0; b: integer := 100): array [,] of integer; 

Returns a two-dimensional array of size m x n filled with 

random integer values function MatrRandomInteger(m: integer := 
5; n: integer := 5; a: integer := 0; b: integer := 100): array 

[,] of integer; 

Returns a two-dimensional array of size m x n, filled with 

random integer values function MatrRandomReal(m: integer := 5; 
n: integer := 5; a: real := 0; b: real := 10): array [,] of 

real; 

Returns a two-dimensional array of size m x n, filled with 

random real values function ReadMatrInteger(m, n: integer): 
array [,] of integer; 

Returns matrix m by n integers entered from the keyboard 
function ReadMatrReal(m, n: integer): array [,] of real; 

Returns a matrix m by n real ones entered from the keyboard 
function Transpose<T>(a: array [,] of T): array [,] of T; 

Transforms a two-dimensional array



 

Short functions Lst, LLst, HSet, SSet, Diet, KV  
function Dict<TKey, TVal>(params pairs: array of 

KeyValuePair<TKey, TVal>): Dictionary<TKey, TVal>; 

Returns a dictionary of pairs of elements (key, value) function 
Dict<TKey, TVal>(params pairs: array of (TKey, TVal)): 

Dictionary<TKey, TVal>; 

Returns a dictionary of element pairs (key, value) function 
DictStr(params pairs: array of (string, string)): 

Dictionary<string, string>; 

Returns a dictionary of element pairs (string, integer) function 
DictStrInt(params pairs: array of (string, integer)): 

Dictionary<string, integer>; 

Returns a dictionary of pairs of elements (string, integer) 

function HSet<T>(params a: array of T): HashSet<T>; 

Returns a set based on a hash table filled with the specified 

values function HSet<T>(a: sequence of T): HashSet<T>; 

Returns the set based on the hash table, filled with values from 
the sequence 
function HSet(a: IntRange): HashSet<integer>; 

Returns a set based on a hash table filled with a range of values 
function HSet(a: CharRange): HashSet<char>; 

Returns a set based on a hash table populated with a range of 

values function KV<TKey, TVal>(key: TKey; value: TVal): 
KeyValuePair<TKey, TVal>; 

Returns a pair of elements (key, value) function 

LLst<T>(params a: array of T): LinkedList<T>; 

Returns a doubly linked list filled with the specified values 
function LLst<T>(a: sequence of T): LinkedList<T>; 

Returns a doubly linked list filled with values from the 
sequence 
function LLst(a: IntRange): LinkedList<integer>; 

Returns a doubly linked list filled with a range of values 
function LLst(a: CharRange): LinkedList<char>; 

Returns a doubly linked list filled with a range of values 
function Lst<T>(params a: array of T): List<T>; 

Returns a list filled with the specified values 



 

function Lst<T>(a: sequence of T): List<T>; 

Returns a list filled with values from the sequence 
function Lst(a: IntRange): List<integer>; 

Returns a list filled with a range of values 
function Lst(a: CharRange): List<char>; 

Returns a list filled with a range of values 
function SSet<T>(params a: array of T): SortedSet<T>; 

Returns the set based on the binary search tree, filled with 
values from the sequence 
function SSet<T>(a: sequence of T): SortedSet<T>; 

Returns the set based on the binary search tree, filled with 
values from the sequence 
function SSet(a: IntRange): SortedSet<integer>; 

Returns a set based on a binary search tree, filled with a range 
of values 
function SSet(a: CharRange): SortedSet<char>; 

Returns a set based on a binary search tree, filled with a range 
of values



Sequence extension methods 

 

Generation of infinite sequences  
function Cycle<T>(Self: sequence of T): sequence of T; 

Repeats the sequence an infinite number of times function 

Step(Self: integer): sequence of integer; 

Returns an infinite sequence of integers from the current value 

with step 1 function Step(Self: integer; step: integer): 
sequence of integer; 

Returns an infinite sequence of integers from the current step 
value 
function Step(Self: real; step: real): sequence of real; 

Returns an infinite sequence of real values from the current step 
value



 

{function Sum<T>(Self: sequence of T; f: T->BigInteger): 

BigInteger; Returns sum of sequence elements projected to a 

numeric value - does not yet work for Lst(1,2,3) function 
AdjacentGroup<T>(Self: sequence of T): sequence of array of T; 

Groups identical consecutive elements, resulting in a sequence 

of arrays function Average(Self: sequence of BigInteger): real; 

Returns the average of sequence elements function 
Batch<T>(Self: sequence of T; size: integer): sequence of 

sequences of T; 

Splits the sequence into series of lengths size function 
Batch<T, Res>(Self: sequence of T; size: integer; proj: 

Func<IEnumerable<T>, Res>): sequence of Res; 

Splits the sequence into series of length size and applies a 

projection to each series Cartesian<T, T1>(Self: sequence of T; b: 
sequence of T1): sequence of (T, T1); 

Cartesian product of sequences function Cartesian<T, T1, 
T2>(Self: sequence of T; b: sequence of T1; func: (T,T1)->T2): 

sequence of T2; 

Cartesian product of sequences 
function CountOf<T>(Self: sequence of T; x: T): integer; 

Returns the number of elements equal to the specified value 
procedure ForEach<T>(Self: sequence of T; action: T -> (); 

Applies an action to each element of the sequence procedure 
ForEach<T>(Self: sequence of T; action: (T,integer) -> ()); 

Applies an action to each element of the sequence, depending 

on the element number function Incremental(Self: sequence of 
integer): sequence of integer; 

Returns the sequence of differences of neighboring elements of 

the original sequence function Incremental(Self: array of 

integer): sequence of integer; 

Returns the sequence of differences of neighboring elements of 

the original sequence function Incremental(Self: List<integer>): 
sequence of integer; 

Returns the sequence of differences of neighboring elements of 

the original sequence function Incremental(Self: 

LinkedList<integer>): sequence of integer; 



Sequence extension methods 

 

Returns the sequence of differences of neighboring elements of 

the original sequence function Incremental(Self: sequence of 

real): sequence of real; 

Returns the sequence of differences of neighboring elements of 
the original sequence 
function Incremental(Self: array of real): sequence of real; 

Returns the sequence of differences of neighboring elements of 
the original sequence 
function Incremental(Self: List<real>): sequence of real; 

Returns the sequence of differences of neighboring elements of 

the original sequence function Incremental(Self: 

LinkedList<real>): sequence of real; 

Returns the sequence of differences of neighboring elements of 

the original sequence function Incremental<T, T1>(Self: sequence 
of T; func: (T,T)- >T1): sequence of T1; 

Returns the sequence of differences of neighboring elements of 

the original sequence. The func function Incremental<T, T1>(Self: 

sequence of T; func: (T,T,integer)->T1) is used as the difference 

function: sequence of T1; 

Returns the sequence of differences of neighboring
elements of the original sequence. As the difference function func 
function Interleave<T>(Self: sequence of T; a: sequence of T): 

sequence of T; 

Alternates elements of two sequences function 
Interleave<T>(Self: sequence of T; a, b: sequence of T): 

sequence of T; 

Alternates elements of three sequences of the function 
Interleave<T>(Self: sequence of T; a, b, c: sequence of T): 

sequence of T; 

Alternates elements of four sequences function 
JoinToString<T>(Self: sequence of T; delim: string): string; 

Converts the sequence elements to a string representation, 

then joins them to a string using delim as a delimiter function 
JoinToString<T>(Self: sequence of T): string; 

Converts the sequence elements to a string representation, 

then combines them into a string using space as a separator 
function LastMaxBy<T, TKey>(Self: sequence of T; selector: T- 



 

>TKey): T; 

Returns the last element of the sequence with the maximum 

key value function LastMinBy<T, TKey>(Self: sequence of T; 
selector: T- >TKey): T; 

Returns the last element of the sequence with the minimal key 

value function MaxBy<T, TKey>(Self: sequence of T; selector: T- 
>TKey): T; 

Returns the first element of the sequence with the maximum 

key value function MinBy<T, TKey>(Self: sequence of T; 
selector: T- >TKey): T; 

Returns the first element of the sequence with the minimum 

key value function Numerate<T>(Self: sequence of T): sequence 
of 

(integer, T); 

Numerate<T>(Self: sequence of T; from: integer): sequence 

of (integer, T); 

Numerates sequence from number from function 

Order<T>(Self: sequence of T): sequence of T; 

Returns an ascending sorted sequence of the function 
OrderDescending<T>(Self: sequence of T): sequence of T; 

Returns the sequence sorted in descending order 
function Pairwise<T>(Self: sequence of T): sequence of (T, T); 

Turns a sequence into a sequence of pairs of neighboring 

elements function Pairwise<T, Res>(Self: sequence of T; func: 
(T,T)- >Res): sequence of Res; 

Turns a sequence into a sequence of pairs of adjacent 

elements, applies func to each pair of the resulting elements, and 

obtains a new sequence function Partition<T>(Self: sequence of 
T; cond: T->boolean): (sequence of T, sequence of T); 

Splits a sequence into two by a given condition. It is 

implemented by two-pass algorithm function Partition<T>(Self: 
sequence of T; cond: (T,integer)- >boolean): (sequence of T, 

sequence of T); 

Divides a sequence into two by a given condition that involves 

an index. Implemented by two-pass algorithm function 
Print<T>(Self: sequence of T; delim: string): sequence of T; 

Prints the sequence on the screen, using delim as a delimiter 



 

function Print<T>(Self: sequence of T): sequence of T; 

Prints the sequence on the screen, using space as a separator 
function PrintLines<T>(Self: sequence of T): sequence of T; 

Prints a sequence, each element is printed on a new line 
function PrintLines<T,T1>(Self: sequence of T; map: T->T1): 

sequence of T; 

Outputs a sequence, each element is mapped using the map 

function and displayed on a new line function Println<T>(Self: 

sequence of T; delim: string): sequence of T; 

Prints the sequence on the screen, using delim as a delimiter, 

and jumps to a new line of the function Println<T>(Self: sequence 
of T): sequence of T; 

Outputs the sequence on the screen, using space as a 

separator, and jumps to a new line function Product(Self: sequence 
of real): real; 

Returns the product of sequence elements function 

Product(Self: sequence of integer): int64; 

Returns the product of the sequence elements 
function Product<T>(Self: sequence of T; f: T->real): real; 

Returns the product of sequence elements projected onto a 

numeric value function Product<T>(Self: sequence of T; f: T-

>integer): int64; 

Returns the product of the elements of the sequence projected 

on the numeric value of the function Product<T>(Self: sequence of 
T; f: T->BigInteger): BigInteger; 

Returns the product of the elements of the sequence projected 

on the numeric value of the function Product(Self: sequence of 
BigInteger): BigInteger; 

Returns the product of the elements of the sequence function 
SkipLast<T>(self: sequence of T; count: integer := 1): sequence 

of T; 

Returns a sequence without last count of elements function 
Slice<T>(Self: sequence of T; from, step: integer): 

sequence of T; 

Returns a slice of the sequence from number from with step > 

0 function Slice<T>(Self: sequence of T; from, step, count: 



 

integer): sequence of T; 

Returns a slice of the sequence from the number from step > 0 
of length no more than count 
function Sorted<T>(Self: sequence of T): sequence of T; 

Returns SortedDescending<T>(Self: sequence of T): sequence 
of T; 

Returns a descending sorted sequence of the function 

SplitAt<T>(Self: sequence of T; ind: integer): (sequence of T, 

sequence of T); 

Splits the sequence into two at the ind position. It is implemented 
by a two-pass algorithm 
function Sum(Self: sequence of BigInteger): BigInteger; 

Returns the sum of sequence elements function Tabulate<T, 
T1>(Self: sequence of T; F: T->T1): sequence of (T, T1); 

Tabulates a function with a sequence function 
TakeLast<T>(Self: sequence of T; count: integer): sequence of 

T; 

Returns the last count of the sequence elements 
function ToHashSet<T>(Self: sequence of T): HashSet<T>; 

Returns the HashSet set for the given sequence 
function ToLinkedList<T>(Self: sequence of T): LinkedList<T>; 

Returns the LinkedList for the given sequence 
function ToSortedSet<T>(Self: sequence of T): SortedSet<T>; 

Returns the SortedSet set by the given sequence of the 

function UnZipTuple<T, T1>(Self: sequence of (T, T1)): 

(sequence of T, sequence of T1); 

Unzips a sequence of two-element tuples into two sequences. 

It is implemented by two-pass algorithm function UnZipTuple<T, T1, 
T2>(Self: sequence of (T, T1, T2)): (sequence of T, sequence of 

T1, sequence of T2); 

Unzips a sequence of three element tuples into three 

sequences. It is implemented by multipass algorithm function 
UnZipTuple<T, T1, T2, T3>(Self: sequence of (T, T1, T2, T3)): 

(sequence of T, sequence of T1, sequence of T2, sequence of 

T3); 

Divides a sequence of four element tuples into four sequences. 

It is implemented by multi-pass algorithm function 
WriteLines(Self: sequence of string; fname: string): sequence 



 

of string; 

Outputs a sequence of lines to a file function ZipTuple<T, 
T1>(Self: sequence of T; a: sequence of T1): sequence of (T, 

T1); 

Combines two sequences into a sequence of two element 

tuples function ZipTuple<T, T1, T2>(Self: sequence of T; a: 
sequence of T1; b: sequence of T2): sequence of (T, T1, T2); 

Combines three sequences into a sequence of three element 

tuples function ZipTuple<T, T1, T2, T3>(Self: sequence of T; a: 
sequence of T1; b: sequence of T2; c: sequence of T3): sequence 

of (T, T1, T2, T3); 

Combines four sequences into a sequence of four element 
tuples



 

Methods for extending one-dimensional dynamic 
arrays  
function AdjacentFind<T>(Self: array of T; eq: (T,T)->boolean; 

start: integer := 0): integer; Finds the first pair of identical 

elements in a row using the eq comparison function, and returns the 

index of the first element of the pair. 

If not found, returns -1 
function ArrEqual<T>(Self,b: array of T): boolean; 

Returns whether the arrays match or not 
function BinarySearch<T>(Self: array of T; x: T): integer; 

Performs a binary search in a sorted array function 
Cartesian<T>(Self: array of T; n: integer): sequence of array 

of T; 

Returns the nth Cartesian degree of the set of elements given 
by the array 
function Combinations<T>(Self: array of T; m: integer): 

sequence of array of T; 

Returns all combinations of m elements 
function ConvertAll<T, T1>(Self: array of T; converter: T- 

>T1): array of T1; 

Converts the array elements and returns the converted array 
function ConvertAll<T, T1>(Self: array of T; converter: 

(T,integer)->T1): array of T1; 

Converts the array elements and returns the converted array 
procedure Fill<T>(Self: array of T; x: T); 

Fills the elements of the array with the specified value 
procedure Fill<T>(Self: array of T; f: integer->T); 

Fills the array elements with values calculated by some rule 
procedure FillRandom(Self: array of integer; a,b: integer); 

Fills the array with random values in the range a to b 
procedure FillRandom(Self: array of real; a,b: real); 

Fills the array with random values in the range from a to b 
function Find<T>(Self: array of T; p: T->boolean): T; 

Performs a search for the first element in the array that satisfies 

the predicate. If not found, it returns null value of corresponding type 



 

function FindAll<T>(Self: array of T; p: T->boolean): array of 

T; 

Returns as an array all elements satisfying the predicate 
function FindIndex<T>(Self: array of T; p: T->boolean): integer; 

Finds the index of the first element in the array, which satisfies 

the predicate. If not found, returns -1 function FindIndex<T>(Self: 
array of T; start: integer; p: T- >boolean): integer; 

Finds the index of the first element in the array that satisfies the 

predicate, starting from the index start. If not found, returns -1 
function FindLast<T>(Self: array of T; p: T->boolean): T; 

Performs search for the last element in the array that satisfies 

the predicate. If not found, it returns null value of corresponding type 
function FindLastIndex<T>(Self: array of T; p: T->boolean): 

integer; 

Performs a search for the index of the last element in the array 

that satisfies the predicate. If not found, returns -1 function 

FindLastIndex<T>(self: array of T; start: integer; p: T-

>boolean): integer; 

Searches for the index of the last element in the array that 
satisfies the predicate, in the range of indexes from 0 to start. If not 
found, it returns -1 
function High(Self: System.Array); 

Returns the index of the last element of the array function 
IndexMax<T>(Self: array of T; index: integer := 0): integer; 

where T: IComparable<T>; 

Returns the index of the first maximal element from the index 

position function IndexMin<T>(Self: array of T; index: integer 
:= 0): integer; where T: IComparable<T>; 

Returns the index of the first minimal element starting from the 
index position 
function IndexOf<T>(Self: array of T; x: T): integer; 

Returns the index of the first occurrence of the element or -1 if 

no element is found function IndexOf<T>(Self: array of T; x: T; 
start: integer): integer; 

Returns the index of the first occurrence of the element starting 
from the index start or -1 if the element is not found 
function Indices<T>(Self: array of T): sequence of integer; 

Returns sequence of indexes of one-dimensional array 



 

function Indices<T>(Self: array of T; cond: T->boolean): 

sequence of integer; 

Returns the sequence of indices of elements of a one-

dimensional array that satisfy the condition of function 
Indices<T>(Self: array of T; cond: (T,integer) - >boolean): 

sequence of integer; 

Returns the sequence of indexes of elements of a one-

dimensional array that satisfy the condition LastIndexMax<T>(Self: 
array of T; index: integer): integer; where T: IComparable<T>; 

Returns the index of the last minimal element in the range 

[0,index-1] function LastIndexMax<T>(Self: array of T): integer; 
where T: IComparable<T>; 

Returns the index of the last maximal element function 
LastIndexMin<T>(Self: array of T; index: integer): integer; 

where T: IComparable<T>; 

Returns the index of the last minimal element in the range 

[0,index-1] function LastIndexMin<T>(Self: array of T): integer; 
where T: IComparable<T>; 

Returns the index of the last minimal element 

function LastIndexOf<T>(Self: array of T; x: T): integer; 

Returns the index of the last occurrence of the element or -1 if 

no element is found function LastIndexOf<T>(Self: array of T; x: 
T; start: integer): integer; 

Returns the index of the last occurrence of the element starting 
from the index start or -1 if the element is not found 
function Low(Self: System.Array); 

Returns the index of the first element of the array 
function Max<T>(Self: array of T): T; where T: IComparable<T>; 

Returns the maximal element 
function Max(Self: array of integer): integer; 

Returns the maximal element 
function Max(Self: array of real): real; 

Returns the maximal element 
function Min<T>(Self: array of T): T; where T: IComparable<T>; 

Returns the minimum element 
function Min(Self: array of integer): integer; 



 

Returns the minimum element 
function Min(Self: array of real): real; 

Returns the minimal element of the function 
Permutations<T>(Self: array of T): sequence of array of T; 

Returns all permutations of the set of elements defined by the 

array function Permutations<T>(Self: array of T; m: integer): 
sequence of array of T; 

Returns all partial permutations of n elements by m 
function RandomElement<T>(Self: array of T): T; 

Returns a random array element 
function Shuffle<T>(Self: array of T): array of T; 

Shuffles the elements of the array at random function 
Slice<T>(Self: array of T; from, step: integer): array of T; 

Returns an array slice from index from with step function 
Slice<T>(Self: array of T; from, step, count: integer): array 

of T; 

Returns a slice of the array from the index with a step length of 
no more than count 
procedure Sort<T>(Self: array of T); 

Sorts the array in ascending order 
procedure Sort<T>(Self: array of T; cmp: (T,T) ->integer); 

Sorts the array in ascending order using cmp as an element 
comparison function 
procedure Transform<T>(Self: array of T; f: T->T); 

Transforms array elements according to the given rule 

procedure Transform<T>(Self: array of T; f: (T,integer)->T); 

Converts the array elements according to a given rule



 

Methods for extending two-dimensional dynamic 

arrays function Col<T>(Self: array [,] of T; k: integer): 
array of T; the k-th column of a two-dimensional array 
function ColCount<T>(Self: array [,] of T): integer; 

Number of columns in a two-dimensional array 
function Cols<T>(Self: array [,] of T): array of array of T; 

Returns an array of columns of a two-dimensional array 
function ColSeq<T>(Self: array [,] of T; k: integer): sequence 

of T; 

the k-th column of the two-dimensional array as a sequence 
function ColsSeq<T>(Self: array [,] of T): sequence of 

sequences of T; 

Returns a sequence of columns of a two-dimensional array 
function ConvertAll<T, T1>(Self: array [,] of T; converter: T- 

>T1): array [,] of T1; 

Converts elements of a two-dimensional array and returns the 

converted array function ConvertAll<T, T1>(Self: array [,] of T; 
converter: (T,integer,integer)->T1): array [,] of T1; 

Converts the elements of a two-dimensional array and returns 

the converted array function ElementsByCol<T>(Self: array [,] of 
T): sequence of T; 

Returns by the given two-dimensional array the sequence of its 

elements by columns function ElementsByRow<T>(Self: array [,] 
of T): sequence of T; 

Returns, for a given two-dimensional array, a sequence of its 

elements by strings function ElementsWithIndices<T>(Self: array 
[,] of T): sequence of (T, integer, integer); 

Returns the sequence (a[ij],ij) of the given two-dimensional 

array procedure Fill<T>(Self: array [,] of T; f: 
(integer,integer) - >T); 

Fills the elements of a two-dimensional array with values 

calculated according to some rule procedure FillRandom(Self: 
array [,] of integer; a,b: integer); 

Fills the elements of a two-dimensional array with random 
values in the range a to b 
procedure FillRandom(Self: array [,] of real; a,b: real); 



 

Fills the elements of a two-dimensional array with random 
values in the range a to b 
procedure ForEach<T>(Self: array [,] of T; act: T -> (); 

Applies an action to each element of a two-dimensional array 
procedure ForEach<T>(Self: array [,] of T; act: 

(T,integer,integer) -> ()); 

Applies an action to each element of a two-dimensional array 
function Indices<T>(Self: array [,] of T; cond: T -> boolean): 

sequence of (integer, integer); 

Returns, for a given two-dimensional array, a sequence of 

indices of elements satisfying the given condition function 
Indices<T>(Self: array [,] of T; cond: (T,integer,integer) -> 

boolean): sequence of (integer, integer); 

Returns, for a given two-dimensional array, a sequence of 

element indices that satisfy the given condition function 
MatrEqual<T>(Self,b: array[,] of T): boolean; 

Is there an element in the matrix 
function MatrSlice<T>(Self: array[,] of T; RowIndex: array of 

integer; ColIndex: array of integer): array[,] of T; 

Returns a slice of a two-dimensional array. RowIndex and 
ColIndex set the rows and columns to be sliced 
function MatrSlice<T>(Self: array[,] of T; FromRow, ToRow, 

FromCol, ToCol: integer): array[,] of T; 

Returns a slice of a two-dimensional array between rows 

FromRow, ToRow and columns FromCol, ToCol function operator 
in<T>(x: T; a: array[,] of T): boolean; 

Is there an element in the matrix 
function Print<T>(Self: array [,] of T; w: integer := 4): array 

[,] of T; 

Print(Self: array [,] of real; w: integer := 7; f: integer 

:= 2): array [,] of real; 

Output two-dimensional real array by format :w:f function 
Println<T>(Self: array [,] of T; w: integer := 4): array [,] of 

T; 

Println(Self: array [,] of real; w: integer := 7; f: 

integer := 2): array [,] of real; 

Output a two-dimensional real array in the format :w:f and skip 
to the next line 



 

function Row<T>(Self: array [,] of T; k: integer): array of T; 

the k-th row of the two-dimensional array 
function RowCount<T>(Self: array [,] of T): integer; 

Number of rows in a two-dimensional array 
function Rows<T>(Self: array [,] of T): array of array of T; 

Returns an array of rows of a two-dimensional array function 
RowSeq<T>(Self: array [,] of T; k: integer): sequence of T; 

the k-th row of a two-dimensional array as a sequence 
function RowsSeq<T>(Self: array [,] of T): sequence of 

sequences of T; 

Returns the string sequence of a two-dimensional array 
procedure SetCol<T>(Self: array [,] of T; k: integer; a: array 

of T); 

Changes column k of a two-dimensional array to another 

column 
procedure SetCol<T>(Self: array [,] of T; k: integer; a: 

sequence of T); 

Changes column k of a two-dimensional array to another 

column of the procedure SetRow<T>(Self: array [,] of T; k: 
integer; a: array of T); 

Changes row k of a two-dimensional array to another row 
procedure SetRow<T>(Self: array [,] of T; k: integer; a: 

sequence of T); 

Changes the string k of a two-dimensional array to another 

string 

function Size<T>(Self: array [,] of T): (integer,integer); 

Number of columns in a two-dimensional array 
procedure SwapCols<T>(Self: array [,] of T; k1, k2: integer); 

Swaps two columns of a two-dimensional array with numbers 
k1 and k2 
procedure SwapRows<T>(Self: array [,] of T; k1, k2: integer); 

Swaps two rows of a two-dimensional array with numbers k1 
and k2 
procedure Transform<T>(Self: array [,] of T; f: T->T); 

Transforms elements of a two-dimensional array according to 

the given rule procedure Transform<T>(Self: array [,] of T; f: 
(T,integer,integer)->T); 



 

Converts the elements of a two-dimensional array according to 
a given rule



Methods for expanding lists 

 

function AdjacentFind<T>(Self: IList<T>; start: integer := 0): 

integer; Finds the first pair of identical elements in a row and 

returns the index of the first element of the pair. If not found, it 

returns -1 
function AdjacentFind<T>(Self: IList<T>; eq: (T,T)->boolean; 

start: integer := 0): integer; 

Finds the first pair of consecutive identical elements using the 
eq comparison function, and returns the index of the first element of 
the pair. If not found, it returns -1 
procedure Fill<T>(Self: List<T>; x: T); 

Fills the elements of the list with the specified value 
procedure Fill<T>(Self: List<T>; f: integer->T); 

Fills the list elements with values calculated by some rule 
function IndexMax<T>(Self: List<T>; index: integer := 0): 

integer; where T: IComparable<T>; 

Returns the index of the first maximal element starting from 
the index position 
function IndexMin<T>(Self: List<T>; index: integer := 0): 

integer; where T: IComparable<T>; 

Returns the index of the first minimal element starting from the 
index position 
function Indices<T>(Self: List<T>): sequence of integer; 

Returns a sequence of list indexes 
function Indices<T>(Self: List<T>; cond: T->boolean): sequence 

of integer; 

Returns the sequence of indices of the list elements satisfying 

the condition function Indices<T>(Self: List<T>; cond: 
(T,integer) - >boolean): sequence of integer; 

Returns the sequence of indices of the list elements that 

satisfy the condition LastIndexMax<T>(Self: List<T>; index: 
integer): integer; where T: IComparable<T>; 

Returns the index of the last minimal element in the range 

[0,index-1] function LastIndexMax<T>(Self: List<T>): integer; 
where T: IComparable<T>; 



 

Returns the index of the last maximal element function 
LastIndexMin<T>(Self: List<T>; index: integer): integer; where 

T: IComparable<T>; 

Returns the index of the last minimal element in the range 

[0,index-1] function LastIndexMin<T>(Self: List<T>): integer; 
where T: IComparable<T>; 

Returns the index of the last minimal element of the function 

RemoveLast<T>(Self: List<T>): List<T>; 

Deletes the last element. If there are no elements, generates 

an exception procedure Replace<T>(Self: List<T>; oldValue, 
newValue: T); 

Replaces all occurrences of one value in an array with 

anotherReplaces all occurrences of one value in a list with another 
function Shuffle<T>(Self: List<T>): List<T>; 

Shuffles the elements of the list at random function 
Slice<T>(Self: List<T>; from, step: integer): List<T>; 

Returns a slice of the list from the index from step function 
Slice<T>(Self: List<T>; from, step, count: integer): List<T>; 

Returns a slice of the list from the index with step length not 
more than count 
procedure Transform<T>(Self: List<T>; f: T->T); 

Converts the elements of an array or list according to a given 
rule 
procedure Transform<T>(Self: List<T>; f: (T,integer)->T); 

Converts the elements of an array or list according to a given 
rule



 

Methods for extending the type integer  
function Between(Self: integer; a, b: integer): boolean; 

Returns True if the value is between the other two function 
Clamp(Self: integer; bottom,top: integer): integer; 

Returns a number bounded by the range from bottom to top 

inclusive function ClampBottom(Self: integer; bottom: integer): 
integer; 

Returns the number bounded by the bottom value of the 

function ClampTop(Self: integer; top: integer): integer; 

Returns the number bounded by top function Divs(Self,d: 

integer): boolean; 

Returns True if the integer is divisible by the specified value 
function DivsAll(Self: integer; params a: array of integer): 

boolean; 

Returns True if the integer is divisible by all values function 
DivsAny(Self: integer; params a: array of integer): boolean; 

Returns True if the integer is divisible by one of the values of 
function Downto(Self: integer; n: integer): sequence of integer; 

Generates a sequence of integers from the current value to n 
in descending order 
function InRange(Self: integer; a,b: integer): boolean; 

Returns True if the value is between the other two function 
IsEven(Self: integer): boolean; 

Returns whether an integer is even. function IsOdd(Self: 

integer): boolean; 

Returns whether the integer is odd 
function NotDivs(Self,d: integer): boolean; > 0; 

Returns True if the integer is not divisible by the specified 
value 
function Range(Self: integer): sequence of integer; 

Returns a sequence of numbers from 1 to this 
function Sqr(Self: integer): integer; 

Returns the square of the number 
function Sqrt(Self: integer): real; 

Returns the square root of a number 



 

function Times(Self: integer): sequence of integer; 

Returns a sequence of integers 0,1,...n-1 
function To(Self: integer; n: integer): sequence of integer; 

Generates a sequence of integers from the current value to n



 

Extension methods of BigInteger type  
function Sqrt(Self: BigInteger): real; 

square root of a number
Returns 



 

Methods of extending the type real  
function Between(Self: real; a, b: real): boolean; 

Returns True if the value is between the other two 
function Clamp(Self: real; bottom,top: real): real; 

Returns a number limited by the range from bottom to top 
inclusive 
function ClampBottom(Self: real; bottom: real): real; 

Returns the number bounded by the bottom value 
function ClampTop(Self: real; top: real): real; 

Returns the number bounded by the top value 
function InRange(Self: real; a,b: real): boolean; 

Returns True if the value is between the other two 
function Round(Self: real): integer; 

Returns the number rounded to the nearest integer 
function Round(Self: real; digits: integer): real; 

Returns x rounded to the nearest real with digits after the 
decimal point 
function RoundBigInteger(Self: real): BigInteger; 

Returns the number rounded to the nearest long integer 
function Sqr(Self: real): real; 

Returns the square of the number 
function Sqrt(Self: real): real; 

Returns the square root of a number 
function ToString(Self: real; frac: integer): string; 

Returns real, formatted to a string with frac digits after the 
decimal point 
function Trunc(Self: real): integer; 

Returns the integer part of a real number function 

TruncBigInteger(Self: real): BigInteger; 

Returns the integer part of a real number as a long integer 

Methods for extending char type  
function Between(Self: char; a, b: char): boolean; 

Returns True if the value is between the other two 
function Code(Self: char): integer; 

Unicode character code 
function InRange(Self: char; a,b: char): boolean; 

Returns True if the value is between the other two 
function IsDigit(Self: char); 

Is the symbol a number 



 

function IsLetter(Self: char): boolean; 

Is the symbol a letter 
function IsLower(Self: char): boolean; 

Whether the character belongs to the category of lowercase 
letters 
function IsUpper(Self: char): boolean; 

Whether the character belongs to the upper-case letter 
category 
function Pred(Self: char); 

Previous Symbol 
function Succ(Self: char); 

The next symbol 
function ToDigit(Self: char): integer; 

Converts symbol to a number 
function ToLower(Self: char): char; 

Converts character to lower case 
function ToUpper(Self: char): char; 

Converts character to uppercase



 

Methods for extending the string type  
function Between(Self: string; a, b: string): boolean; 

Returns True if the value is between two other functions 
IndicesOf(Self, SubS: string; overlay: boolean := False): 

sequence of integer; 

Returns the sequence of indices of substring occurrences in 
the main stringThe overlay parameter determines whether 
overlapping of substring occurrences is allowed 
function InRange(Self: string; a, b: string): boolean; 

Returns True if the value is between two other functions 
Inverse(Self: string): string; 

Returns the string inversion 
function IsMatch(Self: string; reg: string; options: 

RegexOptions := RegexOptions.None): boolean; 

Whether the string satisfies the regular expression function 

Left(Self: string; length: integer): string; 

Returns the substring obtained by cutting the leftmost 

characters from the length string function Matches(Self: string; 
reg: string; options: RegexOptions := RegexOptions.None): 

sequence of Match; 

Searches all occurrences of a regular expression in the 

specified string and returns them as a sequence of elements of type 

Match function MatchValue(Self: string; reg: string; options: 
RegexOptions := RegexOptions.None): string; 

Searches for the first occurrence of a regular expression in the 

specified string and returns it as a string function 
MatchValues(Self: string; reg: string; options: RegexOptions 

:= RegexOptions.None): sequence of string; 

Searches all occurrences of a regular expression in the 

specified string and returns them as a string sequence function 
ReadInteger(Self: string; var from: integer): integer; 

Reads an integer from a string starting at the from position and 
sets from after the read value 
function ReadReal(Self: string; var from: integer): real; 

Reads the real from the string starting at the from position and 



 

sets from after the read value 
function ReadWord(Self: string; var from: integer): string; 

Reads a word from a string starting at the from position and sets 

from after the read value function RegexReplace(Self: string; reg, 
repl: string; options: RegexOptions := RegexOptions.None): 

string; 

Replaces all occurrences of a regular expression in the specified 

string with the specified replacement string and returns the 

transformed string function RegexReplace(Self: string; reg: 

string; repl: Match- >string; options: RegexOptions := 

RegexOptions.None): string; 

Replaces all occurrences of a regular expression in the specified 

string with the specified substitution transformation and returns the 

transformed string function Remove(Self: string; params targets: 
array of string): string; 

Deletes all occurrences of the specified strings in the string 
function Replace(Self: string; oldStr,newStr: string; count: 

integer): string; 

Replaces the count of occurrences of the oldStr substring with 
the newStr substring in the original string 
function Right(Self: string; length: integer): string; 

Returns the substring obtained by cutting the rightmost 
characters from the string 
function Slice(Self: string; from, step: integer): string; 

Returns a slice of the string from the index from with step 
function Slice(Self: string; from, step, count: integer): 

string; 

Returns a slice of the string from the index from with step length 
not more than count 
function ToBigInteger(Self: string): BigInteger; 

Converts string to BigInteger 
function ToInteger(Self: string): integer; 

Converts a string into an integer 
function ToInteger(Self: string; defaultvalue: integer): 

integer; 

Converts string to integerIf conversion fails it returns 
defaultvalue 



 

function ToIntegers(Self: string): array of integer; 

Converts string to an array of integers 
function ToIntegers(Self: string; N: integer): array of 

integer; 

Reads an array of N integers from a string 
function ToReal(Self: string): real; 

Converts the string to a real 
function ToReal(Self: string; defaultvalue: real): real; 

Converts a string to a real value If conversion is not possible 

the defaultvalue function ToReals(Self: string): array of real; 

Converts string to an array of real 
function ToWords(Self: string; params delim: array of char): 

array of string; 

Converts string to an array of words 
function ToWords(Self: string; delims: string := ' '): array 

of string; 

Converts a string into an array of words, using delims 

characters from the string function TryToInteger(Self: string; 
var value: integer): boolean; 

Converts a string to an integer and writes it to value-If the 
conversion fails, it returns False 
function TryToReal(Self: string; var value: real): boolean; 

Converts string to a real value and writes it to value-if the 
conversion fails, it returns False 

Func extension methods  
function Compose<T1, T2, TResult>(Self: T2->TResult; composer: 

T1->T2): T1->TResult; superposition of fUNCTION



 

Complex extension methods  
function Conjugate(Self: Complex): Complex; 

complex conjugate value
Returns 



 

Dictionary expansion methods  
function Each<Key,Source,Res>(Self: sequence of 

System.Linq.IGrouping<Key,Source>; grOperation: 

System.Linq.IGrouping<Key,Source> -> Res): 

Dictionary<Key,Res>; Returns the dictionary that maps the group 

key to the result of the group operation 
EachCount<Key,Source>(Self: sequence of 

System.Linq.IGrouping<Key,Source>): Dictionary<Key,integer>; 

Returns the dictionary that maps the number of elements 

with this key to the group key function Get<Key, Value>(Self: 
IDictionary<Key, Value>; K: Key): Value; 

Returns the value associated with the specified key in the 

dictionary, and if there is no such key, the default procedure 
operator-=<Key,Value>(Self: IDictionary<Key,Value>; k: Key); 

Operation of deleting a pair with a specified key value from 
the dictionary



 

Common methods of file types  
The following methods are defined for all standard file types (Text, 

file, file of T): 

procedure Write(a,b,...); Writes values a, b, ... to the file. 
function Name: string; 

Returns the file name 
function FullName: string; 

Returns the full name of the file function Eof: boolean; 

Returns True if the end of the file is reached, and False 

otherwise procedure Close; 

Closes the file procedure Erase; 

Deletes the file procedure Rename(newname: string); 

Renames the file, giving it the name newname



 

Text file methods  

The following methods are defined for text files (type Text): 

procedure Write(a,b,...); Writes values a, b, ... to the file. 
procedure Writeln(a,b,...); 

Writes values a, b, ... into the file. and moves to the next line 
procedure Print(a,b,...); 

Writes values a, b, ... into the file, separating them with spaces 
procedure Println(a,b,...); 

Writes values a, b, ... to the file, separating them with spaces, 

and skips to the next line of the function Readinteger: integer; 

Returns the value of type integer entered from the text file 
function ReadReal: real; 

Returns the value of type real, entered from the text file 
function ReadChar: char; 

Returns the char value entered from the text file function 
ReadString: string; 

Returns the value of string type entered from a text file, without 

skipping to the next line function ReadBoolean: boolean; 

Returns the boolean type value entered from the text file 
function ReadWord: string; 

Returns the word entered from the text file function 
Readlninteger: integer; 

Returns an integer value entered from a text file and skips to 

the next line of the function ReadlnReal: real; 

Returns the value of type real, entered from the text file, and 

goes to the next line of the function ReadlnChar: char; 

Returns a char value entered from a text file and skips to the 

next line of the function ReadlnString: string; 

Returns the value of string type entered from a text file and 

skips to the next line of the function ReadlnBoolean: boolean; 

Returns a boolean value entered from a text file and skips to 

the next line of the function ReadlnWord: string; 

Returns the word entered from the text file and skips to the next 

line of the function Eof: boolean; 

Returns True if the end of the file is reached, and False 



 

otherwise function Eoln: boolean; 

Returns True if the end of the string is reached, and False 

otherwise function SeekEof: boolean; 

Skips whitespace, then returns True if the end of the file is 

reached function SeekEoln: boolean; 

Skips whitespace characters, then returns True if the end of a 

line in the file function Name: string is reached; 

Returns the file name 
function FullName: string; 

Returns the full file name 
procedure Reset; 

Opens a text file for reading in the Windows procedure 
Reset(en: Encoding); 

Opens a text file for reading in the specified encoding procedure 
Rewrite; 

Opens a text file for writing in Windows encoding procedure 
Rewrite; 

Opens a text file for writing in the specified encoding procedure 
Append; 

Opens a text file in Windows encoding 
procedure Append; 

Opens a text file for addition in the specified encoding 
procedure Close; 

Closes the file 
procedure Flush; 

Writes the contents of the file buffer to disk function 
ReadToEnd: string; 

Returns as a string the contents of the file from the current 

position to the end of the Erase procedure; 

Deletes file (file must be closed) procedure Rename(newname: 
string); 

Renames the file, giving it the name newname (the file must be 

closed) function Lines: sequence of string; 

Returns the string sequence of the opened text file



 

Methods of Binary Bespoke Files  

The following methods are defined for the binary files without binary 
files: 

procedure Reset; Opens an existing unsaved file for reading and 

writing 
procedure Rewrite; 

Opens an existing unsigned file for reading and writing. If the 
file did not exist it is created, if it existed it is reset by the Reset(en: 
Encoding) procedure; 

Opens an existing unsigned file for reading and writing in the 

specified encoding procedure Rewrite(en: Encoding); 

Opens an existing unsigned file for reading and writing in the 
specified encoding. If the file did not exist, it is created, if it did exist, 
it is zeroed by function Position: int64; 

Returns or sets the current position of the file pointer in the 

zipless file function Size: int64; 

Returns the number of bytes in the thumbnail file procedure 
Seek(n: int64); 

Sets the current position of the file pointer in the placeholder 

file to the byte number n procedure Truncate; 

Truncates a zipless file by discarding all elements from the 

position of the file pointer procedure WriteBytes(a: array of byte); 

Writes data from a byte array to a plain file function 
ReadBytes(count: integer): array of byte; 

Reads the specified number of bytes from the byte-free file to 

the byte array function ReadInteger: integer; 

Reads an integer from a binary file 
function ReadBoolean: boolean; 

Reads the boolean from the batchless file function ReadByte: 
byte; 

Reads a byte from a binary file with function ReadChar: char; 

Reads a symbol from a symbol-free file function ReadReal: 

real; 

Reads real from a binary file function ReadString: string; 

Reads a string from a binspace file



 

Typed file methods  

The following methods are defined for typed files of t: 

function Position: int64; Returns the current position of the file 

pointer in a typed file 
function Size: int64; 

Returns the number of elements in a typed file procedure 
Seek(n: int64); 

Sets the current position of the file pointer in the typed file to 

the element with the number n procedure Truncate; 

Truncates a typed file by discarding all elements from the file 
pointer position



 

Typed file extension methods  
function Elements<T>(Self: file of T): sequence of T; 

Returns sequence of elements of an opened typed file 
function Read<T>(Self: file of T): T; 

Reads and returns next element of typed file function 
Read2<T>(Self: file of T): (T,T); 

Reads and returns the following two elements of a typed file 

as a tuple function Read3<T>(Self: file of T): (T,T,T); 

Reads and returns the following three elements of a typed file 

as a tuple function ReadElements<T>(Self: file of T): sequence 
of T; 

Returns the sequence of elements of an open typed file from 

the current element to the end function ReadElements<T>(fname: 
string): sequence of T; 

Opens a typed file, returns a sequence of its elements and 

closes the procedure Reset<T>(Self: file of T); 

Opens an existing typed file procedure Rewrite<T>(Self: file 

of T); 

Creates a new or nulls an existing typed file function 
Seek<T>(Self: file of T; n: int64): file of T; 

Sets the current position of the file pointer in the typed file to 

the element with number n procedure Write<T>(Self: file of T; 
params vals: array of T); 

Writes data to a typed file



 

OpenMP: overview  

OpenMP is   open standard for paralleling programs on 
multiprocessor systems with shared memory (for example, on 
multicore processors). OpenMP implements parallel computing using 
multithreading: the main thread creates a set of slave threads and 
the task is distributed between them. 

OpenMP is a set of compiler directives that control the automatic 
allocation of threads and the data needed to run those threads. 

In PascalABC.NET the following OpenMP elements are 
implemented: 

• Constructions for creating and distributing work between threads 
(parallel for and parallel sections directives) 

• Constructions for thread synchronization (critical directive) 

Directives have the following form: {$omp directive-name [option[,] 

option]...]} Here $omp means that it is an OpenMP directive, -

directivename is the name of the directive, for example parallel, 

after which there can be options. The directive refers to the 

operator before which it is placed. 

Examples of using OpenMP are in the Samples/OMPSamples folder 

The following is a description of the directives. 

The parallel for 

Reduction in the parallel for directive 

Parallel sections and the parallel sections directive 

Synchronization and directive critical 

The parallel for  

The parallel for directive provides paralleling of the loop that 

follows it. 
{$omp parallel for} 

for var i: integer:=1 to 10 do loop body 

Several threads will be created here and different iterations of the 
loop will be distributed across these threads. The number of threads 
is usually the same as the number of processor cores, but in some 

http://ru.wikipedia.org/wiki/OpenMP


 

cases there may be differences, for example if a thread is waiting for 
user input, additional threads may be created in order to use all 
available cores if possible. 

All variables defined outside the parallel loop will be shared, i.e. if the 
loop's body refers to such variables, all the threads will refer to the 
same memory location. All variables declared inside the loop will be 
private, i.e. each thread will have its own copy of this variable. 

The private option allows variables described outside the loop to be 

private. The option is written as follows: 
{$omp parallel for private(list of variables)} 

Variable list - one or more variables, separated by commas. 
var a,b: integer; 

{$omp parallel for private(a, b)} for var i: integer:=1 to 10 

do a :=... 

In this case, variables a and b will be private, and assigning these 
variables in one thread will not affect other threads. 

Limitation: the counters of paralleled loops and nested loops must be 
declared in the loop header. 

Not all loops can be parallelized. If the same variable is accessed at 
different iterations and its value changes, paralleling such a loop will 
lead to errors; different runs may yield different results depending on 
the order in which the variable was accessed. 

{$omp parallel for} for var i:=1 to 2 do a[i] := a[i+1]; 

Here the first iteration reads the second element of the array, and the 
second iteration writes the same element. If the first iteration occurs 
before the second iteration, the first element of the array will be 
written from the second, and if later, from the third element of the 
array. 

var a:integer; 

{$omp parallel for} for var i:=1 to 10 do begin a := i; 

... := a; // by this point a can be changed by another thread 

end; 

The value of the variable a after this cycle can be anything from 1 to 
10. 

Loops are most effectively parallelized if each iteration of the loop 
takes quite a long time to execute. If the loop body consists of a 



 

small number of simple statements, the cost of creating threads and 
distributing the load among them may exceed the benefit of parallel 
execution of the loop. 

Example of parallel matrix multiplication 

Matrix multiplication is a classic example to illustrate parallelism. The 
calculation of the different matrix elements takes place 
independently, so there is no need to provide for any means of 
synchronization. 

Arrays; 

procedure ParallelMult(a,b,c: array [,] of real; n: integer); 

begin 

{$omp parallel for } for var i:=0 to n-1 do for var j:=0 to 

n-1 do begin 

c[i,j]:=0; 

for var l:=0 to n-1 do 

c[i,j]:=c[i,j]+a[i,l]*b[l,j]; 

end; 

end; 

procedure Mult(a,b,c: array [,] of real; n: integer); begin 

for var i:=0 to n-1 do for var j:=0 to n-1 do begin 

c[i,j]:=0; 

for var l:=0 to n-1 do 

c[i,j]:=c[i,j]+a[i,l]*b[l,j]; 

end; 

end; 

const n = 400; 

begin 

var a := Arrays.CreateRandomRealMatrix(n,n); 

var b := Arrays.CreateRandomRealMatrix(n,n); 

var c := new real[n,n]; 

ParallelMult(a,b,c,n); 

writeln('Parallel matrix multiplication: 

',Milliseconds,'); var d := Milliseconds; 

Mult(a,b,c,n); 

writeeln('Non-parallel matrix multiplication: 

',Milliseconds-d,' milliseconds'); 

end.



 

Reduction in the parallel for directive  

Often a variable is accumulated in a loop, this variable is initialized 
before the loop, and at each iteration some value is added to it or 
multiplied by some value. This variable must be declared outside the 
loop, so it will be shared. In this case, parallel execution errors are 
possible: 

var a: integer:=0; {$omp parallel for} for var i:integer:=1 

to 100 do a := a+1; 

Two threads can read the old value, then the first thread will add one 
and write it to the a variable, then the second thread will add one to 
the old value and write the result to the a variable. In this case the 
changes made by the first thread will be lost. The program can work 
correctly with some runs, but errors are also possible. 

The reduction option allows you to ensure the correct accumulation 

of results: 
{$omp parallel for reduction(action : list of variables)} 

In this case all variables from the list will be declared private, so 
different threads will work with their own instances of variables. 
These instances will be initialized depending on the action, and at 
the end of the loop the new value of the variable will be obtained 
from the value of that variable before the loop and all private copies 
of the action application from the option. 

var a: integer := 1; 

{$omp parallel for reduction(+:a)} for var i: integer:=1 to 

2 do a := a+1; 

Here the initial value of variable a is one, for action + local copies will 
be initialized with zeros, two iterations will be executed and for each 
thread the local copy of variable a will take value 1. After the loop 
ends, both local copies will be added to the initial value (1), and the 
resulting value of the a variable will equal 3, the same as in the 
sequential execution. The table lists allowable reduction operators 
and values with which the local copies of the reduction variable are 
initialized: 

Partition operator reduction Initialized value 

+ 0 



 

* 1 

- 0 

and (beaten) ~0 (each bit set) 

or (beaten) 0 

xor (bitwise) 0 

and (logical) true 

or(logical) false 



 

Parallel sections and the parallel sections 
directive  

The parallel sections directive provides parallel execution of 

several operators, simple or compound. 
{$omp parallel sections} 
begin 

Section 1; 

Section 2; 

--; end; 

Each operator in the begin ... end that follows the directive is a 

separate section. 
{$omp parallel sections} 
begin 

operator 1; 

operator 2; 

begin 

operator 3; 

operator 4; 

operator 5; 

end; 

end; 

There are three parallel sections described here, the first is operator 
1, the second is operator 2, and the third is the begin ... end, 

consisting of operators 3-5. 

All variables described outside the parallel sections will be shared, 
i.e. if the sections refer to such variables, the threads executing 
those sections will refer to the same memory location. All variables 
declared inside a section will be accessible only in the section in 
which they are declared. 

Correct operation of parallel sections is possible only if the sections 
are independent of each other - if they can be executed in any order 
and do not access or change the same variables. 

Synchronization and directive critical  
The critical directive excludes the parallel execution of the 

operator that follows it. 
{$omp critical name} operator; 

This operator forms a critical section - a section of code that cannot 



 

be executed simultaneously by multiple threads. 

Only critical sections with the same name cannot be executed 
simultaneously. If one thread is already running a critical section and 
a second thread tries to enter a section with the same name, it will be 
blocked until the first thread leaves the critical section. 

Critical sections can be used when accessing shared variables to 
avoid data loss. 

var a:integer:=0; 

{$omp parallel for} for var i:integer:=1 to 100 do {$omp 

critical} a:=a+1; 

Here the critical section can be used instead of reduction. The entire 
operator a:=a+i will be executed by one thread and only then by the 

other thread. However, the use of critical sections usually decreases 
efficiency by sequentially executing these sections. In this example, 
the whole loop body is a critical section, so the whole loop will be 
executed sequentially. 

But not in all cases the use of critical sections helps to ensure the 
correct operation of parallel designs. 

var a:integer := 0; 

{$omp parallel sections} 

begin 

{$omp critical} 

a:=1; 

{$omp critical} 

a:=a+1; end; 

The value of a depends on the order in which the sections are 
executed. If the first section runs first, the value of a will be two, 
otherwise it will be one. 

When critical sections are used, interlocks may occur. For example, 
the first thread executes code containing critical section A with critical 
section B inside. The second thread executes code containing critical 
section B, inside which critical section A exists. The first thread 
enters section A and fails to enter section B. The second thread 
enters section B and cannot enter section A, since that section is 
already being executed by another thread. The first thread cannot 
continue execution, since section B is already in execution by 
another thread. Both threads are blocked.



 

Compiler directives  

Compiler directives are special commands to the compiler during 
compilation, written in the program text within the sequence {$ ... }. 
The curly brackets denote a comment, but the presence of the $ 
sign after { indicates that there is a compiler directive inside the 
comment. 

General view of the compiler directive: 
{$Directive parameter name}



 

List of compiler directives  
{$apptype <application type>} - Set the type of the application 
(windows/console). 

preference <file name>} - library connection. 

{$gendoc <parameter>} -generates documentation in XML format. 
Parameters: true, false. 

{$mainresource <file name>} - Connecting the .res file in 
as an unmanaged resource 

{$resource <file name>} - Connecting the file as a 
Managed resource 

{$region <region name>} - The beginning of the region (used in the 
editor in code collapse mode 

{$endregion} - end region 

{$title <description>} - The name of the assembly as an 
information product 

{$description <description>} - A brief description of the assembly 

{$product <product name>} - product info 

{$version <product version>} - product version 

{$company<company>} - company 

{$copyright <copyright>} - copyright 

{$trademark <trademark>} - trademark 

{$include <file name>} - Inclusion of the contents of the specified 
file into the program text. 

{$define <identifier>} - definition of the name used in $ifdef, 
$ifndef directives. 

{$undef <identifier>} - name exception, used to override the 
$define directive. 

{$ifdef <identifier>} - start of conditional compilation block 
(condition: "identifier defined" is checked). 

{$ifndef <identifier>} - start of conditional compilation block 
(condition: "identifier not defined" is checked). 



 

{$else} - "otherwise" directive in the conditional compilation block. 

{$endif} - end of conditional compilation block. 

{$faststrings} are strings with fast character access per write, but 
with reference semantics. 

{$string_nullbased+} - including strings indexed from 0. 

{$string_nullbased-} - {$string_nullbased+} - turning off strings 

indexed from 0. {$platformtarget x86} - compiling for 32-bit platform 

(required for 32-bit dlls) 

{$platformtarget x64} - compilation for the 64-bit platform 

The $ifdef, $ifndef directives together with the $else and $endif 
directives control conditional compilation of parts of the source file. 
Each $ifdef, $ifndef directive must correspond to the $endif 
directive which completes it. Any number of conditional compilation 
blocks (including nested ones) and no more than one $else directive 
are allowed between $ifdef, $ifndef and $endif directives. 

Example. Using conditional compilation directives. 
{$define DEBUG} 

begin 

{$ifndef DEBUG} 

writeeln('The name DEBUG is not defined'); 

{$else} 

writeeln('The name DEBUG is defined'); 

{$endif} 

end.



 

GraphWPF module: overview  

The GraphWPF module is a simple graphics library and is designed to 
create graphics and animation programs in procedural and partially 
object style. Drawing is done in a special graphics window; it is not 
possible to draw in multiple windows. In addition, GraphWPF has 

simple mouse and keyboard events that can be used to create 
elementary event driven applications. The main use of GraphWPF is 

for training. 

The GraphWPF module is based on the WPF graphics library and is a 

modern and improved version of the outdated GraphABC module. 

The GraphWPF module defines a number of constants, types, 
procedures, functions and classes for drawing in the graphics 
window. They are divided into the following groups: 

• ГGraphic primitives 
• ФFunctions дforдtext output 
• ФFunctions дforдgraph output 
• ФFunctions дforд outputvideo 
• ФFunctions д systemрдcoordinate 
• proceduresFrameдanimationии 
• auxiliary functionsGraphWPF 
•  typesдmoduleGraphWPF 
•  variablesдmoduleGraphWPF 
• Events дmoduleGraphWPF 
• classBrushTypeype 
• classPenTypeype 
• classFontTypeype 
• classWindowTypeype 
• classWindowTypeWPFypeWPF 
• classGraphWindowTypeype 

Graphic primitives  

procedure Arc(x, y, r, anglel, angle2: real); Draws an arc with 

center at (x,y) and radius r, enclosed between two rays that form 

angles angle1 and angle2 with the OX axis 
procedure Arc(x, y, r, anglel, angle2: real; c: Color); 

Draws an arc of a circle centered at (x,y) and with radius r, 
enclosed between two rays that form angles angle1 and angle2 with 

https://calibre-pdf-anchor.n/%23GraphWPF%20primitives.html
https://calibre-pdf-anchor.n/%23GraphWPF%20text%20functions.html
https://calibre-pdf-anchor.n/%23GraphWPF%20graph%20functions.html
https://calibre-pdf-anchor.n/%23GraphWPF%20functions%20for%20images%20and%20video.html
https://calibre-pdf-anchor.n/%23GraphWPF%20coordinate%20system%20functions.html
https://calibre-pdf-anchor.n/%23GraphWPF%20FrameBasedAnimation%20functions.html
https://calibre-pdf-anchor.n/%23GraphWPF%20service%20functions.html
https://calibre-pdf-anchor.n/%23GraphWPF%20types.html
https://calibre-pdf-anchor.n/%23GraphWPF%20variables.html
https://calibre-pdf-anchor.n/%23GraphWPF%20events.html
https://calibre-pdf-anchor.n/%23BrushType%20class.html
https://calibre-pdf-anchor.n/%23PenType%20class.html
https://calibre-pdf-anchor.n/%23FontType%20class.html
https://calibre-pdf-anchor.n/%23WindowType%20class.html
https://calibre-pdf-anchor.n/%23WindowTypeWPF%20class.html
https://calibre-pdf-anchor.n/%23GraphWPF%20GraphWindowType%20class.html


 

the OX axis, in color c 
procedure Circle(x,y,r: real); 

Draws a circle with center at (x,y) and radius r 
procedure Circle(x,y,r: real; c: Color); 

Draws a circle with center at (x,y), radius r, and color c 
procedure Circle(p: Point; r: real); 

Draws a circle with center at point p and radius r 
procedure Circle(p: Point; r: real; c: Color); 

Draws a circle with center at point p, radius r, and color c 
procedure DrawCircle(x,y,r: real); 

Draws a circle with center at (x,y) and radius r 
procedure DrawCircle(x,y,r: real; c: Color); 

Draws a circle with center at (x,y), radius r, and color c 
procedure DrawCircle(p: Point; r: real); 

Draws the contour of a circle with center at point p and radius r 
procedure DrawCircle(p: Point; r: real; c: Color); 

Draws a circle with center at p, radius r, and color c 
procedure DrawEllipse(x,y,rx,ry: real); 

Draws an ellipse with center at (x,y) and radii rx and ry 
procedure DrawEllipse(x,y,rx,ry: real; c: Color); 

Draws an ellipse with center at (x,y), radii rx and ry, and color c 
procedure DrawEllipse(p: Point; rx,ry: real); 

Draws an ellipse with center at point p and radii rx and ry 
procedure DrawEllipse(p: Point; rx,ry: real; c: Color); 

Draws an ellipse with center at point p, radii rx and ry and color 

c procedure DrawPixels(x,y: real; pixels: array [,] of Color); 

Draws a two-dimensional array of pixels starting from the upper 

left corner with coordinates (x,y) procedure DrawPixels(x,y: real; 

pixels: array [,] of Color; px,py,pw,ph: integer); 

Draws a rectangular area (px,py,pw,ph) of a two-dimensional 

array of pixels starting from the upper left corner with coordinates (x,y) 
procedure DrawPolygon(points: array of Point); 

Draws the outline of a polygon defined by an array of points 

procedure DrawPolygon(points: array of Points; c: GColor); 

Draws the outline of a polygon defined by an array of points and 

color procedure DrawRectangle(x,y,w,h: real); 

Draws the outline of a rectangle with vertex coordinates (x,y) and 

(x+w,y+h) procedure DrawRectangle(x,y,w,h: real; c: Color); 



 

Draws a rectangle outline with vertex coordinates (x,y) and 

(x+w,y+h) color c procedure DrawSector(x, y, r, anglel, angle2: 
real); 

Draws the contour of a sector of a circle centered at (x,y) and 
with radius r, enclosed between two rays that form angles angle1 and 
angle2 with the axis OX 
procedure DrawSector(x, y, r, angle1, angle2: real; c: Color); 

Draws the outline of a sector of a circle centered at (x,y) and with 
radius r, enclosed between two rays that form angles angle1 and 
angle2 with the OX axis, in color c 
procedure Ellipse(x,y,rx,ry: real); 

Draws an ellipse with center at (x,y) and radii rx and ry procedure 

Ellipse(x,y,rx,ry: real; c: Color); 

Draws an ellipse with center at (x,y), radii rx and ry, and color 

inside c procedure Ellipse(p: Point; rx,ry: real); 

Draws an ellipse with center at point p and radii rx and ry 

procedure Ellipse(p: Point; rx,ry: real; c: Color); 

Draws an ellipse with center at p, radii rx and ry, and interior color 

c procedure FillCircle(x,y,r: real); 

Draws the interior of a circle with center at (x,y) and radius r 
procedure FillCircle(x,y,r: real; c: Color); 

Draws the interior of a circle with center at (x,y), radius r and 

color c procedure FillCircle(p: Point; r: real); 

Draws the interior of a circle with center at point p and radius r 
procedure FillCircle(p: Point; r: real; c: Color); 

Draws the interior of a circle with center at point p, radius r and 

color c procedure FillEllipse(x,y,rx,ry: real); 

Draws the interior of an ellipse with center at (x,y) and radii rx 

and ry procedure FillEllipse(x,y,rx,ry: real; c: Color); 

Draws the interior of an ellipse with center at (x,y), radii rx and 

ry, and color c procedure FillEllipse(p: Point; rx,ry: real); 

Draws the interior of an ellipse with center at point p and radii rx 

and ry procedure FillEllipse(p: Point; rx,ry: real; c: Color); 

Draws the interior of an ellipse with center at point p, radii rx and 



 

ry, and color c procedure FillPolygon(points: array of Points); 

Draws the interior of a polygon defined by an array of points 
procedure FillPolygon(points: array of Point; c: GColor); 

Draws the interior of a polygon defined by an array of points 
and color 
procedure FillRectangle(x,y,w,h: real); 

Draws the interior of a rectangle with vertex coordinates (x,y) 
and (x+w,y+h) 
procedure FillRectangle(x,y,w,h: real; c: Color); 

Draws the interior of a rectangle with vertex coordinates (x,y) 
and (x+w,y+h) in color c 
procedure FillSector(x, y, r, anglel, angle2: real); 

Draws the interior of a circle sector with center at (x,y) and 
radius r, enclosed between two rays that form angles angle1 and 
angle2 with the axis OX 
procedure FillSector(x, y, r, anglel, angle2: real; c: Color); 

Draws the interior of a sector of a circle centered at (x,y) and 
with radius r, enclosed between two rays that form angles angle1 
and angle2 with the OX axis, color c 
procedure Line(x,y,x1,y1: real); 

Draws a line segment from point (x,y) to point (x1,y1) 
procedure Line(x,y,x1,y1: real; c: Color); 

Draws a line segment from point (x,y) to point (x1,y1) in color c 
procedure Line(p,p1: Point); 

Draws a line segment from p to p1 
procedure Line(p,p1: Point; c: Color); 

Draws a line segment from p to p1 in color c 
procedure LineBy(dx,dy: real); 

Draws a segment from the current position to a point shifted by 
a vector (dx,dy). The current position is moved to the new point 
procedure LineRel(dx,dy: real); 

Draws a segment from the current position to a point shifted by 
a vector (dx,dy). The current position is moved to the new point 
procedure Lines(a: array of (Point,Point)); 

Draws segments defined by an array of pairs of points 
procedure Lines(a: array of (Point,Point); c: Color); 

Draws segments defined by an array of pairs of points in color c 
procedure LineTo(x,y: real); 



 

Draws a segment from the current position to the point (x,y). 
The current position is moved to (x,y) 
procedure MoveBy(dx,dy: real); 

Moves the current drawing position to the vector (dx,dy) 
procedure MoveRel(dx,dy: real); 

Moves the current drawing position to the vector (dx,dy) 
procedure MoveTo(x,y: real); 

Sets the current drawing position to (x,y) 
procedure Pie(x, y, r, anglel, angle2: real); 

Draws a sector of a circle centered at (x,y) and with radius r, 
enclosed between two rays that form angles angle1 and angle2 with 
the axis OX 
procedure Polygon(points: array of Point); 

Draws a polygon defined by an array of points 
procedure Polygon(points: array of Point; c: Color); 

Draws a polygon defined by an array of points and color 
procedure PolyLine(points: array of Point); 

Draws a polyline defined by an array of points 
procedure PolyLine(points: array of Point; c: Color); 

Draws a polyline defined by an array of points and color 
procedure Rectangle(x,y,w,h: real); 

Draws a rectangle with vertex coordinates (x,y) and (x+w,y+h) 
procedure Rectangle(x,y,w,h: real; c: Color); 

Draws a rectangle with vertex coordinates (x,y) and (x+w,y+h) 
in color c 
procedure Sector(x, y, r, anglel, angle2: real); 

Draws a sector of a circle centered at (x,y) and with radius r, 
enclosed between two rays that form angles angle1 and angle2 with 
the axis OX 
procedure Sector(x, y, r, anglel, angle2: real; c: Color); 

Draws a sector of a circle centered at (x,y) and with radius r, 
enclosed between two rays that form angles angle1 and angle2 with 
the OX axis, in color c 
procedure SetPixel(x,y: real; c: Color); 

Draws a pixel at (x,y) with color c 
procedure SetPixels(x,y: real; w,h: integer; f: 

(integer,integer)->Color); 

Draws a rectangle of pixels of size (w,h) defined by the 



 

mapping f, starting from the upper left corner with coordinates (x,y)



 

Functions for text output  
procedure DrawText(x, y, w, h: real; text: string; alignment: 

Alignment := Alignment.Center; angle: real := 0.0); 

Outputs a string in a rectangle with the coordinates of the top 

left corner (x,y) procedure DrawText(x, y, w, h: real; text: 
string; c: GColor; align: Alignment := Alignment.Center; 

angle: real := 0.0); 

Outputs a string in a rectangle with the coordinates of the top 

left corner (x,y) procedure DrawText(x, y, w, h: real; number: 
integer; align: Alignment := Alignment.Center; angle: real := 

0.0); 

Outputs an integer into a rectangle with the coordinates of the 

top left corner (x,y) procedure DrawText(x, y, w, h: real; number: 
real; align: Alignment := Alignment.Center; angle: real := 

0.0); 

Outputs the real into a rectangle with the coordinates of the 
upper left corner (x,y) 
procedure DrawText(r: GRect; text: string; align: Alignment := 

Alignment.Center; angle: real := 0.0); 

Outputs a line into a rectangle procedure DrawText(r: GRect; 
number: integer; align: Alignment := Alignment.Center; angle: 

real := 0.0); 

Outputs an integer into a rectangle procedure DrawText(r: 
GRect; number: real; align: Alignment := Alignment.Center; 

angle: real := 0.0); 

Outputs the real into a rectangle procedure DrawText(x, y, w, 
h: real; number: integer; c: GColor; alignment: Alignment := 

Alignment.Center; angle: real := 0.0); 

Outputs an integer into a rectangle with the coordinates of the 

top left corner (x,y) procedure DrawText(x, y, w, h: real; number: 
real; c: GColor; align: Alignment := Alignment.Center; angle: 

real := 0.0); 

Outputs the real into a rectangle with the coordinates of the 

top left corner (x,y) procedure DrawText(r: GRect; text: string; 
c: GColor; align: Alignment := Alignment.Center; angle: real 

:= 0.0); 

Outputs the string in a rectangle 
procedure DrawText(r: GRect; number: integer; c: GColor; 



 

alignment: Alignment := Alignment.Center; angle: real := 0.0); 

Outputs the integer into a rectangle 
procedure DrawText(r: GRect; number: real; c: GColor; 

alignment: Alignment := Alignment.Center; angle: real := 0.0); 

Outputs the real into a rectangle procedure DrawText(x, y, w, 
h: real; text: string; f: FontOptions; align: Alignment; 

angle: real); 

Outputs a string in a rectangle with the coordinates of the 
upper left corner (x,y) in the specified font 
function TextHeight(text: string): real; 

Height of text on output 
function TextHeight(text: string; f: FontOptions): real; 

Height of text when output with a given font procedure 
TextOut(x, y: real; text: string; align: Alignment := 

Alignment.LeftTop; angle: real := 0.0); 

Outputs a string at position (x,y) procedure TextOut(x, y: 
real; text: string; c: GColor; align: Alignment := 

Alignment.LeftTop; angle: real := 0.0); 

Outputs a string at position (x,y) in color c procedure 
TextOut(x, y: real; text: integer; alignment: Alignment := 

Alignment.LeftTop; angle: real := 0.0); 

Outputs an integer to position (x,y) procedure TextOut(x, y: 
real; text: integer; c: GColor; align: Alignment := 

Alignment.LeftTop; angle: real := 0.0); 

Outputs an integer at position (x,y) in color c procedure 
TextOut(x, y: real; text: real; alignment: Alignment := 

Alignment.LeftTop; angle: real := 0.0); 

Outputs a real to position (x,y) procedure TextOut(x, y: real; 
text: real; c: GColor; align: Alignment := Alignment.LeftTop; 

angle: real := 0.0); 

Outputs the real at position (x,y) in color c procedure 
TextOut(x, y: real; text: string; f: FontOptions; align: 

Alignment := Alignment.LeftTop; angle: real := 0.0); 

Outputs a string at the (x,y) position in the specified font 

function TextSize(text: string): Size; 

Text size at output 
function TextSize(text: string; f: FontOptions): Size; 



 

Text size when outputting with the specified font 
function TextWidth(text: string): real; 

Width of text on output 
function TextWidth(text: string; f: FontOptions): real; 

Width of the text when outputting with the specified font



 

Functions for graph output procedure DrawGraph(f: real 
-> real; a, b, min, max, x, y, w, h: real; title: string := 

''); Draws a graph of a function f, given on the segment [a,b] 

along the abscissa axis and on the segment [min,max] along the 

ordinate axis, in a rectangle defined by the parameters x,y,w,h 
procedure DrawGraph(f: real -> real; a, b, min, max, x, y, w, 

h: real; XTicks: real; YTicks: real; title: string := ''); 

Draws a graph of a function f, given on the segment [a,b] on the 

abscissa axis and on the segment [min,max] on the ordinate axis, in 

a rectangle defined by the parameters x,y,w,h. The last two 

parameters set the grid spacing on OX and OY procedure 

DrawGraph(f: real -> real; a, b, min, max: real; r: GRect; title: 

string := ''); 

Draws a graph of a function f, given on the segment [a,b] on the 

abscissa axis and on the segment [min,max] on the ordinate axis, in 

a rectangle r procedure DrawGraph(f: real -> real; a, b, min, max: 
real; r: GRect; XTicks, YTicks: real; title: string := ''); 

Draws a graph of a function f, given on the segment [a,b] on the 

abscissa axis and on the segment [min,max] on the ordinate axis, in 

a rectangle r. The last two parameters specify the OX and OY grid 

spacing of the procedure DrawGraph(f: real -> real; a, b, min, 
max: real; title: string := ''); 

Draws a graph of a function f, given on the segment [a,b] on the 

abscissa axis and on the segment [min,max] on the ordinate axis, to 

a full graphics window procedure DrawGraph(f: real -> real; a, b: 
real; x, y, w, h: real; title: string := ''); 

Draws a graph of a function f, given on the interval [a,b], in a 

rectangle defined by the parameters x,y,w,h procedure 
DrawGraph(f: real -> real; a, b: real; r: GRect; title: string 

:= ''); 

Draws the graph of a function f, given on the interval [a,b], in 
the rectangle r 
procedure DrawGraph(f: real -> real; r: GRect; title: string 

:= ''); 

Draws a graph of a function f, given on the interval [-5,5], in 

rectangle r procedure DrawGraph(f: real -> real; a, b: real; 



 

title: string := ''); 

Draws a graph of a function f, given on the interval [a,b], on a 

full graphics window procedure DrawGraph(f: real -> real; title: 
string := ''); 

Draws the graph of the function f, given on the interval [-5,5], 
on the full graphics window



 

Functions for image and video output  

procedure DrawImage(x,y: real; fname: string); Draws an image 

from file fname at position (x,y) 
procedure DrawImage(x,y,w,h: real; fname: string); 

Draws an image from the fname file at the (x,y) position 
of size w by h 
procedure DrawImageUnscaled(x,y: real; fname: string); 

Draws the unscaled image from the fname file at the (x,y) 
position 
procedure DrawVideo(x,y: real; fname: string); 

Outputs video from file fname to position (x,y) 
function ImageHeight(fname: string): integer; 

Image height in pixels 
function ImageSize(fname: string): (integer,integer); 

Image size in pixels 
function ImageWidth(fname: string): integer; 

Image width in pixels



 

Functions for setting the coordinate system 

procedure DrawGrid; Draws the coordinate system grid procedure 
SetMathematicCoords(x1: real := -10; x2: real := 10; drawgrid: 

boolean := true); 

Sets the mathematical coordinate system with the range 
[x1,x2] on the OX axis. 
procedure SetMathematicCoords(x1,x2,ymin: real; drawgrid: 

boolean := true); 

Sets a mathematical coordinate system with range [x1,x2] on 

OX axis and minimum ymin coordinate on OY axis procedure 
SetStandardCoords(scale: real := 1.0; x0: real := 0; y0: real 

:= 0); 

Sets a standard coordinate system (OY axis pointing down) 

with center (x0,y0) procedure SetStandardCoordsSharpLines(x0: 
real := 0; y0: real := 0); 

Sets a standard coordinate system with center (x0,y0). The 
image is not scaled to the monitor resolution and the lines are sharp 
function XMax: real; 

Maximum displayed x-coordinate function XMin: real; 

Minimum displayed x-coordinate function YMax: real; 

The maximum displayed y-coordinate of the function YMin: 

real; 

Minimum displayed y-coordinate



 

Frame-based animation procedures procedure 
BeginFrameBasedAnimation(Draw: procedure; frate: integer := 

61); Starts frame-based animation. Before drawing each frame, the 

contents of the window are erased, then the Draw procedure 
BeginFrameBasedAnimation(Draw: procedure(frame: integer); 

frate: integer := 61) is called; 

Starts a frame-based animation. Before drawing each frame 

the contents of the window are erased, then the procedure 

BeginFrameBasedAnimationTime(Draw: procedure(dt: real)) is 

called with a parameter equal to the frame number; 

Starts a frame-based animation and passes to each frame 
handler the time dt that has elapsed since the last redraw 
procedure EndFrameBasedAnimation; 

Completes the animation based on the frame



 

Auxiliary functions GraphWPF function ARGB(a,r,g,b: 
byte): Color; Returns color by red, green and blue component and 

transparency parameter (in range 0..255) function clRandom: 
Color; 

Returns a random color 
function ColorBrush(c: Color): GBrush; 

Returns a single-color brush, specified by color function 

ColorPen(c: Color): GPen; 

Returns a single-color pen specified by the color function 

EmptyColor: Color; 

Returns fully transparent color function GrayColor(b: byte): 

Color; 

Returns the gray color with intensity b function Pnt(x,y: 

real): GPoint; 

Returns a point with coordinates (x,y) 
function RandomColor: Color; 

Returns a random color 
function RandomPoint(w: real := 0): Point; 

The function of generating a random point in the boundaries of 

the screen. The optional parameter w specifies the minimum offset 

from the border function RandomPoints(n: integer; w: real := 0): 
array of Point; 

The function generates an array of random points in the 

boundaries of the screen. The optional parameter w specifies the 

minimum offset from the border function Rect(x,y,w,h: real): 
GRect; 

Returns a rectangle with corner coordinates (x,y), width w and 

height h procedure Redraw(d: ()->()); 

A procedure to speed up the output. Refreshes the screen 
after all changes 
function RGB(r,g,b: byte): Color; 

Returns the color in the red, green and blue components (in 
the range 0...255) 
function Vect(vx,vy: real): Vector; 



 

Creates a vector with coordinates vx,vy



 

GraphWPF module types 
Alignment = 

(LeftTop,CenterTop,RightTop,LeftCenter,Center,RightCenter,LeftBottom,CenterBottom,RightBottom); 

Text alignment constants relative to the point 

Color = System.Windows.Media.Color; 

Color type 
Colors = System.Windows.Media.Colors; 

Color constants 
CoordType = (MathematicalCoords,StandardCoords); 

Types of coordinate system 
Fontstyle = (Normal,Bold,Italic,BoldItalic); 

Font style type 
GBrush = System.Windows.Media.Brush; 

Brush type 
GColor = System.Windows.Media.Color; 

Color type 

GPoint = System.Windows.Point; 

Point type 
GRect = System.Windows.Rect; 

Rectangle type 
GWindow = System.Windows.Window; 

Window type 
Key = System.Windows.Input.Key; 

Key Type 
Point = System.Windows.Point; 

Point type 
Vector = System.Windows.Vector; 

Vector type



 

GraphWPF module variables  

Brush: BrushType; Current Brush 
Pen: PenType; 

Current Feather 
Font: FontOptions; 

Current font 
Window: WindowTypeWPF; 

Main window 
GraphWindow: GraphWindowType; 

Graphic window



 

Events of the GraphWPF module  
OnMouseDown: procedure(x, y: real; mousebutton: integer); 

The event of clicking the mouse button. (x,y) - coordinates of 
the mouse cursor when the event occurs, mousebutton = 1 if the left 
mouse button is pressed, and 2 if the right mouse button is pressed 
OnMouseUp: procedure(x, y: real; mousebutton: integer); 

Mouse button release event. (x,y) - coordinates of the mouse 
cursor when the event occurs, mousebutton = 1 if the left mouse 
button is pressed, and 2 if the right mouse button is pressed 
OnMouseMove: procedure(x, y: real; mousebutton: integer); 

Mouse move event. (x,y) - coordinates of the mouse cursor 
when the event occurs, mousebutton = 0 if the mouse button is not 
pressed, 1 if the left mouse button is pressed, and 2 if the right 
mouse button is pressed 
OnKeyDown: procedure(k: Key); 

Key press event 
OnKeyUp: procedure(k: Key); 

Key release event 
OnKeyPress: procedure(ch: char); 

Symbol key press event 
OnResize: procedure; 

Event of changing the size of the graphics window 
OnClose: procedure; 

Event that occurs when the main window is closed 
OnDrawFrame: procedure(dt: real); 

The event of redrawing the graphic window. The dt parameter 
denotes the number of milliseconds since the last call of 
OnDrawFrame 

BrushType class  

/// Brush type; 6 /// Brush color; 

shType = class



 

PenType class  

Pen type. 

PenType class property Color: GCoior; Pen color property 

RoundCap: boolean; 

Rounding of the pen at the ends of the lines property Width: 

real; 

Pen width X: real; 

The current X coordinate of the pen property Y: real; 

The current Y coordinate of the pen



 

FontType class  

Font type. 

FontOptions class property Color: GColor; Font color 

property Name: string; 

Font name 
property Size: real; 

Font size in units of 1/96 inch 

property Style: FontStyle; 

Font style 

FontOptions class methods  
function WithColor(c: GColor): FontOptions; 

Font color decorator 

function WithName(name: string): FontOptions; 

Font style decorator 
function WithSize(sz: real): FontOptions; 

Font size decorator 

function WithStyle(fs: FontStyle): FontOptions; 

Font style decorator



 

GraphWindowType class  

Type of graphic window. 

GraphWindowType class properties  

property Height: real; the height of the graphics window property 

Left: real; 

The indent of the graphic window from the left edge of the 

main window property Top: real; 

Indent of the graphics window from the upper edge of the main 
window 
property Width: real; 

Graphic window width 

GraphWindowType class methods  
function Center: Point; 

Center of the graphics window 
function ClientRect: GRect; 

Graphic window client rectangle 
procedure Fill(fname: string); 

Fills the contents of the graphics window with the wallpaper 
from 
of a file named fname 
procedure Load(fname: string); 

Restores the contents of the graphics window from a file 

named fname procedure Save(fname: string); 

Saves the contents of the graphics window to a file with 
by the name fname



 

WindowTypeWPF class  

WindowTypeWPF is a type of graphical window. The base class is 

WindowType. 

Methods of the WindowTypeWPF class  

procedure Clear(c: Color); override; Clears the graphic window 

with color c 
procedure Clear; override; 

Clears the graphic window in white 
procedure Load(fname: string); 

Restores the contents of the graphics window from a file 
named fname 
procedure Save(fname: string); 

Saves the contents of the graphics window to a file named 
fname 

Properties of the WindowType base class  
property Caption: string; 

Window title 
property Height: real; 

Height of the client part of the main window 
property IsFixedSize: boolean; 

Does the graphics window have a fixed size 
property Left: real; 

Main window indent from the left edge of the screen 
property Title: string; 

Window title 
Property Top: real; 

Main window indent from the top edge of the screen 
property Width: real; 

Width of the client part of the main window 

Methods of the WindowType base class  
function Center: Point; 

Returns the center of the main window 
function ClientRect: GRect; 



 

Returns the rectangle of the client area of the window 
function RandomPoint(w: real := 0): Point; 

Returns a random point in the boundary of the screen. The 
optional parameter w specifies the minimum offset from the 
boundary 
procedure CenterOnScreen; 

Centers the main window in the center of the screen 
procedure Clear(c: GColor); virtual; 

Clears the graphic window with the specified color 
procedure Clear; virtual; 

Clears the graphic window in white 
procedure Close; 

Closes the main window and ends the application 
procedure Maximize; 

Maximizes the main window 
procedure Minimize; 

Minimizes the main window 
procedure Normalize; 

Returns the main window to its normal size 
procedure SetPos(l, t: real); 

Sets the indent of the main window from the upper left edge of 
the screen 
procedure SetSize(w, h: real); 

Sets the size of the client part of the main window



 

WindowType class  
Type of main application window. 

WindowType class property Caption: string; Window title 

property Height: real; 

The height of the client part of the main window property 

IsFixedSize: boolean; 

Whether the graphic window has a fixed size property Left: 

real; 

The indent of the main window from the left edge of the screen 

property Title: string; 

Window title 
Property Top: real; 

The indent of the main window from the top edge of the screen 

property Width: real; 

Width of the client part of the main window 

WindowType class methods  

function Center: Point; 

Returns the center of the main window function ClientRect: 

GRect; 

Returns the rectangle of the client window area function 

RandomPoint(w: real := 0): Point; 

Returns a random point in the boundary of the screen. The 

optional parameter w specifies the minimum offset from the border 

of the CenterOnScreen procedure; 

Centers the main window in the center of the screen procedure 

Clear(c: GColor); virtual; 

Clears the graphic window with the specified color procedure 

Clear; virtual; 

Clears the graphic window with the white color procedure 

Close; 

Closes the main window and terminates the Maximize 



 

procedure application; 

Maximizes the main window 
procedure Minimize; 

Minimizes the main window 
procedure Normalize; 

Returns the main window to its normal size procedure 

SetPos(l, t: real); 

Sets the offset of the main window from the upper left edge of 

the screen procedure SetSize(w, h: real); 

Sets the size of the client part of the main window



 

WPFObj^cts module: overview  
The wPFobjects module implements vector graphics objects with the 

ability to overlap each other, create compound graphics objects and 
nest them repeatedly in each other. Each vector graphic object 
redraws itself correctly when it is moved, resized and partially 
overlapped by other objects. 

WPFobjects module is designed for early learning the basics of 

object-oriented programming, as well as for implementing animation 
and interactive projects of medium complexity. The WPFobjects 
module is based on the WPF graphical library and is a modern and 
improved version of the outdated ABcobjects module. 

The WPFobjects module defines a number of constants, types, 

procedures, functions and classes. They are divided into the 
following groups: 

•  typesдmoduleWPFObjects 
•  variablesдmoduleWPFObjectsjects 
• Events дmoduleWPFObjects 
• classObjectWPF 
• Class BoundedObjectWPF 
• classEllipseWPF 
• classCircleWPF 
• classRectangleWPFgleWPF 
• classSquareWPF 
• classRoundRectWPF 
• classRoundSquareWPF 
• classLineWPF 
• classRegRegularPolygonWPFygonWPF 
• classStarWPF 
• classPolPolygonWPFonWPF 
• classPictureWPF 
• ФIntersection functions 
• Graphic window class 
• The class of the list of graphical objects 
• auxiliary functionsWPFObjects

https://calibre-pdf-anchor.n/%23WPFObjects%20types.html
https://calibre-pdf-anchor.n/%23WPFObjects%20Variables.html
https://calibre-pdf-anchor.n/%23WPFObjects%20events.html
https://calibre-pdf-anchor.n/%23Class%20ObjectWPF.html
https://calibre-pdf-anchor.n/%23Class%20BoundedObjectWPF.html
https://calibre-pdf-anchor.n/%23Class%20EllipseWPF.html
https://calibre-pdf-anchor.n/%23Class%20CircleWPF.html
https://calibre-pdf-anchor.n/%23Class%20RectangleWPF.html
https://calibre-pdf-anchor.n/%23Class%20SquareWPF.html
https://calibre-pdf-anchor.n/%23Class%20RoundRectWPF.html
https://calibre-pdf-anchor.n/%23Class%20RoundSquareWPF.html
https://calibre-pdf-anchor.n/%23Class%20LineWPF.html
https://calibre-pdf-anchor.n/%23Class%20RegularPolygonWPF.html
https://calibre-pdf-anchor.n/%23Class%20StarWPF.html
https://calibre-pdf-anchor.n/%23Class%20PolygonWPF.html
https://calibre-pdf-anchor.n/%23Class%20PictureWPF.html
https://calibre-pdf-anchor.n/%23Intersection%20functions.html
https://calibre-pdf-anchor.n/%23Class%20GraphWindowType.html
https://calibre-pdf-anchor.n/%23Class%20List%20of%20objects.html
https://calibre-pdf-anchor.n/%23WPFObjects%20functions%201.html




 

WPFObj^cts module types  

Color = System.Windows.Media.Color; Type Colors = 

System.Windows.Media.Colors; 

Color constants 
Fontstyle = (Normal,Bold,Italic,BoldItalic); 

Font style type 
GBrush = System.Windows.Media.Brush; 

Brush type 
GColor = System.Windows.Media.Color; 

Color type 
GPen = System.Windows.Media.Pen; 

Pen type 
GPoint = System.Windows.Point; 

Point type 
GRect = System.Windows.Rect; 

Rectangle type 
GSize = System.Windows.Size; 

Size type 
GWindow = System.Windows.Window; 

Window type 
Key = System.Windows.Input.Key; 

Key Type 
Point = System.Windows.Point; 

Point type



 

WPFObj^cts module variables  

Window: WindowType; Main Window Graphwindow: GraphWindowType; 

Graphic window 

Objects: ObjectsType; 

List of graphic objects



 

WPFObj^cts events  

OnClose: procedure;  Event occurring at closing 

main window 

OnDrawFrame: procedure(dt: real); 

The event of redrawing the graphic window. The dt parameter 
denotes the number of milliseconds since the last call of 
OnDrawFrame 
OnKeyDown: procedure(k: Key); 

Key press event 
OnKeyPress: procedure(ch: char); 

Symbol key press event 
OnKeyUp: procedure(k: Key); 

Key release event 
OnMouseDown: procedure(x, y: real; mousebutton: integer); 

The event of clicking the mouse button. (x,y) - coordinates of 
the mouse cursor when the event occurs, mousebutton = 1 if the left 
mouse button is pressed, and 2 if the right mouse button is pressed 
OnMouseMove: procedure(x, y: real; mousebutton: integer); 

Mouse move event. (x,y) - coordinates of the mouse cursor 
when the event occurs, mousebutton = 0 if the mouse button is not 
pressed, 1 if the left mouse button is pressed, and 2 if the right 
mouse button is pressed 
OnMouseUp: procedure(x, y: real; mousebutton: integer); 

Mouse button release event. (x,y) - coordinates of the mouse 
cursor when the event occurs, mousebutton = 1 if the left mouse 
button is pressed, and 2 if the right mouse button is pressed 
OnResize: procedure; 

Event of changing the size of the graphics window 

Class Ob jectWPF  

A basic class of graphical objects. 

ObjectWPF class properties  

property Bottom: real; The offset of the bottom of the graphical 

object from the top edge of the window 
property Bounds: GRect; 

Rectangle of a graphical object 
Point: Point; 



 

The center of a graphical object 
property CenterBottom: Point; 

The central bottom point of the graphical object 
property CenterTop: Point; 

The central upper point of the graphical object 
property Color: GColor; 

The color of the graphical object 
property Direction: (real,real); 

Direction of movement. Used with the Move method 
property FontColor: Color; 

The color of the text font inside the graphical object 
property FontName: string; 

The name of the text font inside the graphical object 
property FontSize: real; 

The font size of the text inside the graphical object 
property Height: real; 

The height of the graphical object 
property Left: real; 

Indent the graphical object from the left window edge 
property LeftBottom: Point; 

Lower left corner of the graphical object 
property LeftTop: Point; 

Left top corner of the graphical object 
property Number: integer; 

An integer number displayed in the center of the graphical 
object. The Text property is used 
property RealNumber: real; 

A real number displayed in the center of the graphical object. 
The Text property is used 
Property Right: real; 

Indent the right edge of the graphical object from the left edge 
of the window 
property RightBottom: Point; 

Lower right corner of the graphical object 
property RightTop: Point; 

Top right corner of the graphical object 
property RotateAngle: real; 

Angle of rotation of the graphical object (clockwise) 



 

property ScaledHeight: real; 

Scaled height of the graphical object 
property ScaledSize: GSize; 

The scaled size of the graphical object 
property ScaledWidth: real; 

Scaled width of the graphical object 
property ScaleFactor: real; 

Scaling multiplier of the object 
property Size: GSize; 

The size of the graphical object 
property Text: string; 

Text inside the graphical object property TextAlignment: 

Alignment; 

Text alignment inside the graphical object property Top: real; 

Indent the graphical object from the top edge of the window 

property Visible: boolean; 

Visibility of the graphical object property Width: real; 

Width of the graphical object 

ObjectWPF class methods  
procedure AnimMoveBy(a,b: real; sec: real := 1); 

Animates the movement of the graphical object on the vector 

(a,b) for sec seconds procedure Move; virtual; 

Moves the graphical object to the vector (dx,dy) procedure 

MoveBy(a,b: real); 

Moves the graphical object to the vector (a,b) procedure 

MoveBy(v: (real,real)); 

Moves the graphical object to the vector (a,b) procedure 

MoveForward(r: real); 

Moves the graphical object in the RotateAngle direction (up 

when RotateAngle=0) procedure MoveTime(dt: real); virtual; 

Moves the graphical object along the Direction vector with 
velocity Velocity in time dt 
procedure MoveTo(x,y: real); 

Moves the upper left corner of the graphical object to the point 

(x,y) procedure Rotate(a: real); 



 

Rotates the graphical object clockwise by the angle a 
procedure RotateToPoint(x,y: real); 

Rotates the graphical object so that it "looks" at the point (x,y) 
procedure Scale(r: real); 

Scales a graphical object to r times its current size



 

The class of graphical objects with a border  

A class of graphical objects with a boundary. The base class is 

ObjectWPF. 

Properties of the BoundedObjectWPF class  

property BorderColor: GColor; The color of the border of the 

graphical object 
property BorderWidth: real; 

Width of the graphical object border 
property Color: GColor; 

The color of the graphical object 

Methods of the BoundedObjectWPF class  
function RemoveBorder: BoundedObjectWPF; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black): 

BoundedObjectWPF; 

Decorator for turning on the object boundary 

Properties of the ObjectWPF base class  
property Bottom: real; 

The indent of the bottom of the graphical object from the top 
edge of the window 
property Bounds: GRect; 

Rectangle of a graphical object 
Point: Point; 

The center of a graphical object 
property CenterBottom: Point; 

The central bottom point of the graphical object 
property CenterTop: Point; 

The central upper point of the graphical object 
property Color: GColor; 

The color of the graphical object 
property Direction: (real,real); 

Direction of movement. Used with the Move method 
property FontColor: Color; 

The color of the text font inside the graphical object property 



 

FontName: string; 

The name of the text font inside the graphical object property 

FontSize: real; 

The font size of the text inside the graphical object property 

Height: real; 

The height of the graphical object 
property Left: real; 

The indent of the graphical object from the left edge of the 

window property LeftBottom: Point; 

Lower left corner of the graphical object 
property LeftTop: Point; 

Left top corner of the graphical object 
property Number: integer; 

An integer number displayed in the center of the graphical 

object. The Text property RealNumber: real is used; 

A real number displayed in the center of the graphical object. 

The Text property Right: real is used; 

Indent the right edge of the graphical object from the left edge 
of the window 
property RightBottom: Point; 

Lower right corner of the graphical object 
property RightTop: Point; 

Right top corner of the graphical object property RotateAngle: 

real; 

Angle of rotation of the graphical object (clockwise) property 

ScaledHeight: real; 

The scaled height of the graphical object property 

ScaledSize: GSize; 

The scaled size of the graphical object property ScaledWidth: 

real; 

Scaled width of the graphical object 
property ScaleFactor: real; 

Scaling multiplier of the object 
property Size: GSize; 

The size of the graphical object 
property Text: string; 



 

Text inside a graphical object 
property TextAlignment: Alignment; 

Text alignment inside a graphical object 
Property Top: real; 

Indent the graphical object from the top edge of the window 
property Visible: boolean; 

Visibility of a graphical object 
property Width: real; 

Width of the graphical object 

ObjectWPF base class methods  
procedure AnimMoveBy(a,b: real; sec: real := 1); 

Animates the movement of the graphical object on the vector 
(a,b) for sec seconds 
procedure Move; virtual; 

Moves the graphical object to the vector (dx,dy) 
procedure MoveBy(a,b: real); 

Moves the graphical object to vector (a,b) 
procedure MoveBy(v: (real,real)); 

Moves the graphical object to vector (a,b) 
procedure MoveForward(r: real); 

Moves the graphical object in the direction of 
RotateAngle (up when RotateAngle=0) 
procedure MoveTime(dt: real); virtual; 

Moves the graphical object along the Direction vector with 
velocity Velocity in time dt 
procedure MoveTo(x,y: real); 

Moves the upper left corner of the graphical object to the (x,y) 
point 
procedure Rotate(a: real); 

Rotates the graphical object clockwise by the angle a 
procedure RotateToPoint(x,y: real); 

Rotates the graphical object so that it "looks" at the point (x,y) 
procedure Scale(r: real); 

Scales a graphical object to r times its current size



 

EllipseWPF class  

The class of graphical objects "Ellipse". The base class is 
BoundedObjectWPF. 

EllipseWPF class constructors constructor (x,y,rx,ry: 
real; c: GColor); Creates an ellipse with center at point (x,y), radii 

(rx,ry) and interior color with constructor (x,y,rx,ry: real; c: 
GColor; borderwidth: real; borderColor: GColor := 

Colors.Black); 

Creates an ellipse with center at point (x,y), radii (rx,ry) and 
interior color c, with borderWidth and borderColor 
constructor (p: Point; rx,ry: real; c: GColor); 

Creates an ellipse with center at point p, radii (rx,ry) and 

interior color with constructor (p: Point; rx,ry: real; c: GColor; 
borderWidth: real; borderColor: GColor := Colors.Black); 

Creates an ellipse with center at point p, radii (rx,ry) and 
interior color c, with borderWidth and borderColor 

Properties of the EllipseWPF class  
property RadiusX: real; 

The radius of the ellipse along the OX axis RadiusY: real; 

Radius of the ellipse along the OY axis 

EllipseWPF class methods  
function RemoveBorder; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black); 

Decorator for turning on the object boundary 
function SetRotate(da: real): EllipseWPF; 

Object rotation decorator 
function SetText(txt: string; size: real := 16; fontname: 

string := 'Arial'; c: GColor := Colors.Black): EllipseWPF; 

Object text decorator 

Properties of the BoundedObjectWPF base class  
property BorderColor: GColor; 



 

The color of the border of the graphical object 
property BorderWidth: real; 

Width of the graphical object border 
property Color: GColor; 

The color of the graphical object 

Methods of the BoundedObjectWPF base class  
function RemoveBorder: BoundedObjectWPF; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black): 

BoundedObjectWPF; 

Decorator for turning on the object boundary 

Properties of the ObjectWPF base class  
property Bottom: real; 

The indent of the bottom of the graphical object from the top 
edge of the window 
property Bounds: GRect; 

Rectangle of a graphical object 
Point: Point; 

The center of a graphical object 
property CenterBottom: Point; 

The central bottom point of the graphical object 
property CenterTop: Point; 

The central upper point of the graphical object 
property Color: GColor; 

The color of the graphical object 
property Direction: (real,real); 

Direction of movement. Used with the Move method 
property FontColor: Color; 

The color of the text font inside the graphical object 
property FontName: string; 

The name of the text font inside the graphical object 
property FontSize: real; 

The font size of the text inside the graphical object 
property Height: real; 

The height of the graphical object 
property Left: real; 

Indent the graphical object from the left window edge 



 

property LeftBottom: Point; 

Lower left corner of the graphical object 
property LeftTop: Point; 

Left top corner of the graphical object 
property Number: integer; 

An integer number displayed in the center of the graphical 
object. The Text property is used 
property RealNumber: real; 

A real number displayed in the center of the graphical object. 
The Text property is used 
Property Right: real; 

Indent the right edge of the graphical object from the left edge 
of the window 
property RightBottom: Point; 

Lower right corner of the graphical object 
property RightTop: Point; 

Top right corner of the graphical object 
property RotateAngle: real; 

Angle of rotation of the graphical object (clockwise) 
property ScaledHeight: real; 

Scaled height of the graphical object 
property ScaledSize: GSize; 

The scaled size of the graphical object 
property ScaledWidth: real; 

Scaled width of the graphical object 
property ScaleFactor: real; 

Scaling multiplier of the object 
property Size: GSize; 

The size of the graphical object 
property Text: string; 

Text inside a graphical object 
property TextAlignment: Alignment; 

Text alignment inside a graphical object 
Property Top: real; 

Indent the graphical object from the top edge of the window 
property Visible: boolean; 

Visibility of a graphical object 
property Width: real; 

Width of the graphical object 

ObjectWPF base class methods  
procedure AnimMoveBy(a,b: real; sec: real := 1); 



 

Animates the movement of the graphical object on the vector 
(a,b) for sec seconds 
procedure Move; virtual; 

Moves the graphical object to the vector (dx,dy) 
procedure MoveBy(a,b: real); 

Moves the graphical object to vector (a,b) 
procedure MoveBy(v: (real,real)); 

Moves the graphical object to vector (a,b) 
procedure MoveForward(r: real); 

Moves the graphical object in the direction of 
RotateAngle (up when RotateAngle=0) 
procedure MoveTime(dt: real); virtual; 

Moves the graphical object along the Direction vector with 
velocity Velocity in time dt 
procedure MoveTo(x,y: real); 

Moves the upper left corner of the graphical object to the (x,y) 
point 
procedure Rotate(a: real); 

Rotates the graphical object clockwise by 
angle a 

procedure RotateToPoint(x,y: real); 

Rotates the graphical object so that it "looks" at the point (x,y) 
procedure Scale(r: real); 

Scales a graphical object to r times its current size



 

CircleWPF class  

The class of graphical objects "Circle". The base class is 
BoundedObjectWPF. 

CircleWPF class constructors  

constructor (x,y,r: real; c: GColor); Creates a circle of radius r 

of a given color with coordinates of the center (x,y) 
constructor (p: Point; r: real; c: GColor); 

Creates a circle of radius r of a given color with center p 
constructor (x,y,r: real; c: GColor; borderwidth: real; 

borderColor: GColor := Colors.Black); 

Creates a circle of radius r of a given color with center 

coordinates (x,y), borderWidth and borderColor constructor (p: 
Point; r: real; c: GColor; borderWidth: real; 

borderColor: GColor := Colors.Black); 

Creates a circle of radius r of a given color with center p, 
borderWidth and borderColor 

CircleWPF class properties  
property Height: real; 

Circle height 
property Radius: real; 

Circle radius 
property Width: real; 

Circle width 

CircleWPF class methods  
function RemoveBorder; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black); 

Decorator for turning on the object boundary 
function SetRotate(da: real): CircleWPF; 

Object rotation decorator 
function SetText(txt: string; size: real := 16; fontname: 

string := 'Arial'; c: GColor := Colors.Black): CircleWPF; 

Object text decorator 



 

Properties of the BoundedObjectWPF base class  
property BorderColor: GColor; 

The color of the border of the graphical object 
property BorderWidth: real; 

Width of the graphical object border 
property Color: GColor; 

The color of the graphical object 

Methods of the BoundedObjectWPF base class  
function RemoveBorder: BoundedObjectWPF; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black): 

BoundedObjectWPF; 

Decorator for turning on the object boundary 

Properties of the ObjectWPF base class  
property Bottom: real; 

The indent of the bottom of the graphical object from the top 
edge of the window 
property Bounds: GRect; 

Rectangle of a graphical object 
Point: Point; 

The center of a graphical object 
property CenterBottom: Point; 

The central bottom point of the graphical object 
property CenterTop: Point; 

The central upper point of the graphical object 
property Color: GColor; 

The color of the graphical object 
property Direction: (real,real); 

Direction of movement. Used with the Move method 
property FontColor: Color; 

The color of the text font inside the graphical object 
property FontName: string; 

The name of the text font inside the graphical object 
property FontSize: real; 

The font size of the text inside the graphical object 



 

property Height: real; 

The height of the graphical object 
property Left: real; 

Indent the graphical object from the left window edge 
property LeftBottom: Point; 

Lower left corner of the graphical object 
property LeftTop: Point; 

Left top corner of the graphical object 
property Number: integer; 

An integer number displayed in the center of the graphical 
object. The Text property is used 
property RealNumber: real; 

A real number displayed in the center of the graphical object. 
The Text property is used 
Property Right: real; 

Indent the right edge of the graphical object from the left edge 
of the window 
property RightBottom: Point; 

Lower right corner of the graphical object 
property RightTop: Point; 

Top right corner of the graphical object 
property RotateAngle: real; 

Angle of rotation of the graphical object (clockwise) 
property ScaledHeight: real; 

Scaled height of the graphical object 
property ScaledSize: GSize; 

The scaled size of the graphical object 
property ScaledWidth: real; 

Scaled width of the graphical object 
property ScaleFactor: real; 

Scaling multiplier of the object 
property Size: GSize; 

The size of the graphical object 
property Text: string; 

Text inside a graphical object 
property TextAlignment: Alignment; 

Text alignment inside a graphical object 
Property Top: real; 

Indent the graphical object from the top edge of the window 
property Visible: boolean; 

Visibility of a graphical object 
property Width: real; 



 

Width of the graphical object 

ObjectWPF base class methods  
procedure AnimMoveBy(a,b: real; sec: real := 1); 

Animates the movement of the graphical object on the vector 
(a,b) for sec seconds 
procedure Move; virtual; 

Moves the graphical object to the vector (dx,dy) 
procedure MoveBy(a,b: real); 

Moves the graphical object to vector (a,b) 
procedure MoveBy(v: (real,real)); 

Moves the graphical object to vector (a,b) 
procedure MoveForward(r: real); 

Moves the graphical object in the direction of 
RotateAngle (up when RotateAngle=0) 
procedure MoveTime(dt: real); virtual; 

Moves the graphical object along the Direction vector with 
velocity Velocity in time dt 
procedure MoveTo(x,y: real); 

Moves the upper left corner of the graphical object to the (x,y) 
point 
procedure Rotate(a: real); 

Rotates the graphical object clockwise by an angle a 
procedure RotateToPoint(x,y: real); 

Rotates the graphical object so that it "looks" at the point (x,y) 
procedure Scale(r: real); 

Scales a graphical object to r times its current size



 

RectangleWPF class  
Rectangle" class of graphical objects. The base class is 

BoundedObjectWPF. 

RectangleWPF class constructor (x,y,w,h: real; c: 
GColor); Creates a rectangle of size (w,h) of a given color with the 

coordinates of the upper left corner (x,y) 
constructor (p: Point; w,h: real; c: GColor); 

Creates a rectangle of size (w,h) of a given color with the 

coordinates of the upper left corner set by p constructor (x,y,w,h: 
real; c: GColor; borderwidth: real; 

borderColor: GColor := Colors.Black); 

Creates a rectangle of size (w,h) of a given color with 

coordinates of the upper left corner (x,y), borderWidth and 

borderColor constructor (p: Point; w,h: real; c: GColor; 
borderWidth: real; borderColor: GColor := Colors.Black); 

Creates a rectangle of size (w,h) of a given color with the 
coordinates of the upper left corner set by p, with borderWidth and 
borderColor 

RectangleWPF class methods  
function RemoveBorder; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black); 

Decorator to turn on the object boundary 
function SetRotate(da: real): RectangleWPF; 

Object rotation decorator function SetText(txt: string; 
size: real := 16; fontname: string := 'Arial'; c: GColor := 

Colors.Black): RectangleWPF; 

Object text decorator 

Properties of the BoundedObjectWPF base class  
property BorderColor: GColor; 

The color of the border of the graphical object 
property BorderWidth: real; 

Width of the graphical object border 
property Color: GColor; 



 

The color of the graphical object 

Methods of the BoundedObjectWPF base class  
function RemoveBorder: BoundedObjectWPF; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black): 

BoundedObjectWPF; 

Decorator to turn on the object boundary 

Properties of the ObjectWPF base class  
property Bottom: real; 

The indent of the bottom of the graphical object from the top 
edge of the window 
property Bounds: GRect; 

Rectangle of a graphical object 
Point: Point; 

The center of a graphical object 
property CenterBottom: Point; 

The central bottom point of the graphical object 
property CenterTop: Point; 

The central upper point of the graphical object 
property Color: GColor; 

The color of the graphical object 
property Direction: (real,real); 

Direction of movement. Used with the Move method 
property FontColor: Color; 

The color of the text font inside the graphical object 
property FontName: string; 

The name of the text font inside the graphical object 
property FontSize: real; 

The font size of the text inside the graphical object 
property Height: real; 

The height of the graphical object 
property Left: real; 

Indent the graphical object from the left window edge 
property LeftBottom: Point; 

Lower left corner of the graphical object 
property LeftTop: Point; 



 

Left top corner of the graphical object 
property Number: integer; 

An integer number displayed in the center of the graphical 
object. The Text property is used 
property RealNumber: real; 

A real number displayed in the center of the graphical object. 
The Text property is used 
Property Right: real; 

Indent the right edge of the graphical object from the left edge 
of the window 
property RightBottom: Point; 

Lower right corner of the graphical object 
property RightTop: Point; 

Top right corner of the graphical object 
property RotateAngle: real; 

Angle of rotation of the graphical object (clockwise) 
property ScaledHeight: real; 

Scaled height of the graphical object 
property ScaledSize: GSize; 

The scaled size of the graphical object 
property ScaledWidth: real; 

Scaled width of the graphical object 
property ScaleFactor: real; 

Scaling multiplier of the object 
property Size: GSize; 

The size of the graphical object 
property Text: string; 

Text inside a graphical object 
property TextAlignment: Alignment; 

Text alignment inside the graphical object property Top: 

real; 

Indent the graphical object from the top edge of the window 

property Visible: boolean; 

Visibility of a graphical object 
property Width: real; 

Width of the graphical object 

ObjectWPF base class methods  
procedure AnimMoveBy(a,b: real; sec: real := 1); 

Animates the movement of the graphical object on the vector 



 

(a,b) for sec seconds procedure Move; virtual; 

Moves the graphical object to the vector (dx,dy) procedure 

MoveBy(a,b: real); 

Moves the graphical object to the vector (a,b) procedure 

MoveBy(v: (real,real)); 

Moves the graphical object to the vector (a,b) procedure 

MoveForward(r: real); 

Moves the graphical object in the RotateAngle direction (up 

when RotateAngle=0) procedure MoveTime(dt: real); virtual; 

Moves the graphical object along the Direction vector with 
velocity Velocity in time dt 
procedure MoveTo(x,y: real); 

Moves the upper left corner of the graphical object to the (x,y) 
point 
procedure Rotate(a: real); 

Rotates the graphical object clockwise by the angle a 
procedure RotateToPoint(x,y: real); 

Rotates the graphical object so that it "looks" at the point (x,y) 
procedure Scale(r: real); 

Scales a graphical object by a factor of three relative to its 
current size



 

SquareWPF class  
The class of graphical objects "Square". The base class is 

CircleWPF. 

Constructors class SquareWPF constructor (x,y,w: 
real; c: GColor); Creates a square with side w of specified color 

with coordinates of the upper left corner (x,y) 
constructor (p: Point; w: real; c: GColor); 

Creates a square with side w of a given color with the 

coordinates of the upper left corner set by p constructor (x,y,w: 
real; c: GColor; borderwidth: real; 

borderColor: GColor := Colors.Black); 

Creates a square with side w of specified color with 
coordinates of the upper left corner (x,y), borderWidth and 
borderColor 
constructor (p: Point; w: real; c: GColor; borderWidth: real; 

borderColor: GColor := Colors.Black); 

Creates a square with side w of a given color with the 
coordinates of the upper left corner set by p, with borderWidth and 
borderColor 

Methods of the SquareWPF class  
function RemoveBorder; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black); 

Decorator to turn on the object boundary 
function SetRotate(da: real): SquareWPF; 

Object rotation decorator 
function SetText(txt: string; size: real := 16; fontname: 

string := 'Arial'; c: GColor := Colors.Black): SquareWPF; 

Object text decorator 

CircleWPF base class properties  
property Height: real; 

Circle height 
property Radius: real; 

Circle radius 



 

property Width: real; 

Circle width 

CircleWPF base class methods  
function RemoveBorder; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black); 

Decorator to turn on the object boundary 
function SetRotate(da: real): CircleWPF; 

Object rotation decorator 
function SetText(txt: string; size: real := 16; fontname: 

string := 'Arial'; c: GColor := Colors.Black): CircleWPF; 

Object text decorator 

Properties of the BoundedObjectWPF base class  
property BorderColor: GColor; 

The color of the border of the graphical object 
property BorderWidth: real; 

Width of the graphical object border 
property Color: GColor; 

The color of the graphical object 

Methods of the BoundedObjectWPF base class  
function RemoveBorder: BoundedObjectWPF; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black): 

BoundedObjectWPF; 

Decorator to turn on the object boundary 

Properties of the ObjectWPF base class  
property Bottom: real; 

The indent of the bottom of the graphical object from the top 
edge of the window 
property Bounds: GRect; 

Rectangle of a graphical object 
Point: Point; 

The center of a graphical object 
property CenterBottom: Point; 



 

The central bottom point of the graphical object 
property CenterTop: Point; 

The central upper point of the graphical object 
property Color: GColor; 

The color of the graphical object 
property Direction: (real,real); 

Movement direction. It is used by the Move property 

FontColor: Color method; 

The color of the text font inside the graphical object property 

FontName: string; 

The name of the text font inside the graphical object property 

FontSize: real; 

The font size of the text inside the graphical object 
property Height: real; 

The height of the graphical object 
property Left: real; 

Indent the graphical object from the left window edge 
property LeftBottom: Point; 

Lower left corner of the graphical object 
property LeftTop: Point; 

Left top corner of the graphical object 
property Number: integer; 

An integer number displayed in the center of the graphical 
object. The Text property is used 
property RealNumber: real; 

A real number displayed in the center of the graphical object. 

The Text property Right: real is used; 

Indent the right edge of the graphical object from the left edge 
of the window 
property RightBottom: Point; 

Lower right corner of the graphical object 
property RightTop: Point; 

Top right corner of the graphical object 
property RotateAngle: real; 

Angle of rotation of the graphical object (clockwise) property 

ScaledHeight: real; 

Scaled height of the graphical object 
property ScaledSize: GSize; 



 

The scaled size of the graphical object property ScaledWidth: 

real; 

The scaled width of the graphical object property 

ScaleFactor: real; 

Scaling multiplier of the object 
property Size: GSize; 

The size of the graphical object 
property Text: string; 

Text inside a graphical object 
property TextAlignment: Alignment; 

Text alignment inside the graphical object property Top: 

real; 

Indent the graphical object from the top edge of the window 
property Visible: boolean; 

Visibility of a graphical object 
property Width: real; 

Width of the graphical object 

ObjectWPF base class methods  
procedure AnimMoveBy(a,b: real; sec: real := 1); 

Animates the movement of the graphical object on the vector 
(a,b) for sec seconds 
procedure Move; virtual; 

Moves the graphical object to the vector (dx,dy) 
procedure MoveBy(a,b: real); 

Moves the graphical object to vector (a,b) 
procedure MoveBy(v: (real,real)); 

Moves the graphical object to the vector (a,b) procedure 

MoveForward(r: real); 

Moves the graphical object in the RotateAngle direction (up 

when RotateAngle=0) procedure MoveTime(dt: real); virtual; 

Moves the graphical object along the Direction vector with 
velocity Velocity in time dt 
procedure MoveTo(x,y: real); 

Moves the upper left corner of the graphical object to the point 

(x,y) procedure Rotate(a: real); 

Rotates the graphical object clockwise by the angle a 
procedure RotateToPoint(x,y: real); 



 

Rotates the graphical object so that it "looks" at the point (x,y) 
procedure Scale(r: real); 

Scales a graphical object to r times its current size



 

RoundRectWPF class  
The class of graphical objects "Rectangle with rounded edges". 
The base class is BoundedObjectWPF. 

RoundRectWPF class constructors  

constructor (x,y,w,h,r: real; c: GColor); Creates a rectangle 

with rounded edges of size (w,h) with a rounding radius r of a given 

color with coordinates of the upper left corner (x,y) 
constructor (p: Point; w,h,r: real; c: GColor); 

Creates a rectangle with rounded edges of size (w,h) with 

rounding radius r of specified color with coordinates of the upper left 

corner set by the point p constructor (x,y,w,h,r: real; c: GColor; 
borderWidth: real; borderColor: GColor := Colors.Black); 

Creates a rectangle with rounded edges of size (w,h) with 

rounding radius r of specified color with coordinates of the upper left 

corner (x,y), borderWidth and borderColor constructor (p: Point; 
w,h,r: real; c: GColor; borderWidth: real; borderColor: GColor 

:= Colors.Black); 

Creates a rectangle with rounded edges of size (w,h) with a 
rounding radius r of the specified color with the coordinates of the 
upper left corner set by p, with borderWidth and borderColor 

RoundRectWPF class properties  
property RoundRadius: real; 

Rounding radius 

Methods of the RoundRectWPF class  
function RemoveBorder; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black); 

Decorator to turn on the object boundary 
function SetRotate(da: real): RoundRectWPF; 

Object rotation decorator 
function SetText(txt: string; size: real := 16; fontname: 

string := 'Arial'; c: GColor := Colors.Black): RoundRectWPF; 

Object text decorator 



 

Properties of the BoundedObjectWPF base class  
property BorderColor: GColor; 

The color of the border of the graphical object 
property BorderWidth: real; 

Width of the graphical object border 
property Color: GColor; 

The color of the graphical object 

Methods of the BoundedObjectWPF base class  
function RemoveBorder: BoundedObjectWPF; 

Decorator for turning off the object boundary 
function SetBorder(w: real := 1; c: GColor := Colors.Black): 

BoundedObjectWPF; 

Decorator to turn on the object boundary 

Properties of the ObjectWPF base class  
property Bottom: real; 

The indent of the bottom of the graphical object from the top 
edge of the window 
property Bounds: GRect; 

Rectangle of a graphical object 
Point: Point; 

The center of a graphical object 
property CenterBottom: Point; 

The central bottom point of the graphical object 
property CenterTop: Point; 

The central upper point of the graphical object 
property Color: GColor; 

The color of the graphical object 
property Direction: (real,real); 

Direction of movement. Used with the Move method 


